Deft A set is a collection of distinct, unordered items called elements.
ex $D=\{0,1,2,3, \ldots, 9\}$ has 10 element

$$
\begin{aligned}
& \text { bits }=\{0,13 \text { has } 2 \text { écements } \\
& \text { Boo }=\text { \{True, False } 3 \text { has } 2 \text { elements } \\
& \mathbb{Z}=\text { integers nah infinite elements } \\
& \mathbb{Q}=\text { rationals }-2,-1,0,1,2, \ldots\} \\
& \begin{aligned}
\mathbb{Q} & =\text { rational } \\
\mathbb{R} & =\text { reals }
\end{aligned} \\
& \begin{aligned}
R & =\text { reals } \\
V & =\{a, e, i, 0, u, y\} \text { has } 6 \text { celts } \\
\Sigma & =\{a, b, c \ldots, x, y z\} \text { has } 26 \text { eats }
\end{aligned}
\end{aligned}
$$

$\frac{\text { Pet }}{(A=B)}$ Two sets A and B are equal A and B contain exactly same elements.
ex $\{0,1\}=\{1,0\}=\{0,0,1\}$
$\frac{\text { Deft }}{\text { in } S}$ (not in S). $x \in S(x \notin S)$ iff x is in S (not in S).
ex $0 \in$ bits $2 \notin$ bits $\pi \notin \mathbb{Z}$
Def The cardinality or size of a set S (denoted by $|S|$) is the number of distinct ex \mid bits $|=2 \quad| \varepsilon \mid=26$
Q Can we have a set S such mat 15) yes!
$\frac{\text { Deft }}{}$ with no empty set $(\xi 3$ or $\phi)$ is the set with no elements.

$$
|\phi|=0 .
$$

Q is $\{\phi\}=\varnothing$? No!

$$
\begin{aligned}
& 1\{\phi\} \mid=1 \\
& F=\{\phi,\{\phi\},\{\{\phi 3\}\} \quad|F|=3 \\
& F \text { is a box with } 3 \text { elements }
\end{aligned}
$$

Q If $A=B$ does $|A|=|B|$? Yes.
Claim If $|A|=|B|$ then $A=B$ is false.
Disproof by counter example.

$$
|\{1,2,3\}|=3 \quad|\{4,5,6\}|=3
$$

Pet Set builder notation defines a set $S=\{x$: a rule about $x\}$
S is the set that contains elements x sit. the rule is true.
ex

$$
\begin{aligned}
\text { evens }= & \{x: x \in \mathbb{Z} \text { and } x \text { even }\} \\
& \{x: x=2 c \text { for } c \in \mathbb{Z} \\
& \{x \in \mathbb{Z}: x \text { is even }\} \\
\text { bits }= & \{x \in \mathbb{Z}: 0 \leq x \leq 1\}
\end{aligned}
$$

Pet A is a subset of B (denoted $A \subseteq B)$ iff even element of A is also in B. we can di so say that B is a superset of A. $(B \geq A)$
ex evens $\subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$

$$
\begin{aligned}
& \mathbb{R} \nsubseteq \mathbb{Q} \\
& \pi \in \mathbb{R} \text { but } \\
& \pi \notin \mathbb{Q} \\
& \text { bits } \subseteq\{x: x \in \mathbb{Z} \text { and } 0 \leq x \leq 9\} \\
& \{0,5\} \nsubseteq\{0,1\}
\end{aligned}
$$

Note $\varnothing \subseteq \subseteq S$ for any set S

