Deft A set is a collection of distinct, unordered items called elements.
ex $D=\{0,1,2,3, \ldots, 9\}$ has 10 element

$$
\begin{aligned}
& \text { bits }=\{0,13 \text { has } 2 \text { écements } \\
& \text { col }=\text { \{True, False } 3 \text { has } 2 \text { elements } \\
& \mathbb{Z}=\text { integers nah infinite elements } \\
& \mathbb{Q}=\text { rationals }-2,-1,0,1,2, \ldots\} \\
& \begin{aligned}
\mathbb{Q} & =\text { rational } \\
\mathbb{R} & =\text { reals }
\end{aligned} \\
& \begin{aligned}
R & =\text { reals } \\
V & =\{a, e, i, 0, u, y\} \text { has } 6 \text { elms } \\
\Sigma & =\{a, b, c \ldots, x, y z\} \text { has } 26 \text { elms }
\end{aligned}
\end{aligned}
$$

$\frac{\text { Pet }}{(A=B)}$ Two sets A and B are equal A and B contain exactly same elements.
ex $\{0,1\}=\{1,0\}=\{0,0,1\}$
$\frac{\text { Deft }}{\text { in } S}$ (not in S). $x \in S(x \notin S)$ iff x is in S (not in S).
ex $0 \in$ bits $2 \notin$ bits $\pi \notin \mathbb{Z}$
Def The cardinality or size of a set S (denoted by $|S|$) is the number of distinct ex \mid bits $|=2 \quad| \varepsilon \mid=26$
Q Can we have a set S such mat 15) yes!
$\frac{\text { Deft }}{}$ with no empty set $(\xi 3$ or $\phi)$ is the set with no elements.

$$
|\phi|=0 .
$$

Q is $\{\phi\}=\varnothing$? No!

$$
\begin{aligned}
& 1\{\phi\} \mid=1 \\
& F=\{\phi,\{\phi\},\{\{\phi 3\}\} \quad|F|=3 \\
& F \text { is a box with } 3 \text { elements }
\end{aligned}
$$

Q If $A=B$ does $|A|=|B|$? Yes.
Claim If $|A|=|B|$ then $A=B$ is false.
Disproof by counter example.

$$
|\{1,2,3\}|=3 \quad|\{4,5,6\}|=3
$$

Pet Set builder notation defines a set $S=\{x$: a rule about $x\}$
S is the set that contains elements x sit. the rule is true.
ex

$$
\begin{aligned}
\text { evens }= & \{x: x \in \mathbb{Z} \text { and } x \text { even }\} \\
& \{x: x=2 c \text { for } c \in \mathbb{Z} \\
& \{x \in \mathbb{Z}: x \text { is even }\} \\
\text { bits }= & \{x \in \mathbb{Z}: 0 \leq x \leq 1\}
\end{aligned}
$$

Pet A is a subset of B (denoted $A \subseteq B)$ iff even relent of A is also in B. we can diss say that B is a superset of A. $(B \geqslant A)$
ex evens $\subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$

$$
\begin{aligned}
& \mathbb{R} \nsubseteq \mathbb{Q} \\
& \pi \in \mathbb{R} \text { but } \\
& \pi \notin \mathbb{Q} \\
& \text { bits } \subseteq\{x: x \in \mathbb{Z} \text { and } 0 \leq x \leq 9\} \\
& \{0,5\} \notin\{0,1\}
\end{aligned}
$$

Note $\oint \subseteq \underset{S}{C} S$ for any set S
subset: $\subseteq \quad($ not $\leq)$
Q $|A| f|B|$? $\subseteq B$ what can we say about $|A| \leq|B|$? If $B \geqslant A$ then $|B| \geqslant|A|$ converse: If $|A| \leq|B|$ then $A \leq B$.
(if a, then b. converse: if b, then a) if $A \subseteq B$, then $|A| \leq|B|$
Disproof of Converse:
weill use a counter example.

$$
\begin{array}{cc}
A=\{1,2\} & B=\{x, y, z\} \\
|A|=2 & |B|=3
\end{array}
$$

$A \nsubseteq B$ because $1 \in A$ but $1 \notin B$ claim $\{x \in \mathbb{Z}: 18 \mid x\} \subseteq\{x \in \mathbb{Z}: 6 \mid x\}$
The set of numbers divisible by 18 is a subset of the set of numbers divisible by 6 .
Every number divisible by 18 is also divisible by 6 .
notation: $m \mid n$ means " m divides n " "n is divisible by" "there exists integer k sven that $n=m k "$
ex

Proof UTS $\{x \in \mathbb{Z}:\{8 \mid \times 3 \leq\{x \in \mathbb{Z}: 6 \mid \times 3$ wis $a \in\{x \in \mathbb{Z}: 181 \times\}$ then $a \in\{x \in \mathbb{Z}: 61 \times\}$ by def. of \subseteq.
Suppose that $a \in\{x \in \mathbb{Z}: 18 \mid \times\}$.
statement
reasoning
$a=18 \mathrm{c}$ for $c \in \mathbb{Z}$ by det. of div. by 18
$a=6.3 \cdot \mathrm{c}$
by factoring
$a=6 k$ for some $k \in \mathbb{Z}$
because product of ints is int ($3 c$)

G1a by deft of div. by 6 $a \in\{x \in \mathbb{Z}: 6 \mid x\}$ reuniting
goal: a is divisible by 6
$a=6 i$ for $i \in \mathbb{Z}$
$0 \in \mathbb{Z} \quad\{1,2\} \subseteq \mathbb{Z} \quad\{1,2\} \notin \mathbb{Z}$
Deft $A \cup B$ " A union B " is $\{x: x \in A$ or $x \in B\}$

ex $\{2,4,6\} \cup\{2,3,4\}=\{2,3,4,6\}$
evens Sods $=\mathbb{Z}$
$A \cup O=A \quad$ for any $\operatorname{set} A$
$A \cup A=A$
Let $A \cap B$ " A intersect B " $\{x: x \in A$ and $x \in B\}$

ex $\{2,4,6\} \cap\{2,3,4\}=\{2,4\} \hat{z}$ not dis-
evens \cap odds $=\varnothing$

$$
\begin{aligned}
& A \cap \phi=\varnothing \\
& A \cap A=A
\end{aligned}
$$

Deft set A, B are disjoint if $A \cap B=\varnothing$. That is, they have no iflewents in

Let $A-B$ or $A \backslash B$ " A minus B " $\{x: x \in A$ and $x \notin B\}$

$$
\begin{aligned}
& \{2,4,63-\{2,3,43=\{6\} \\
& \{2,3,4\}-\{2,4,6\}=\{3\}
\end{aligned}
$$

evens -odds = evens
$A-B \subseteq A$ for all sets A, B
$A-\phi=\hat{A}$ foal sets A^{\prime}

Deft \bar{A} or "A "A complement" $\{x: x \notin A\}$

$$
\begin{aligned}
\overline{\{2,4,6\}} & =\{\ldots-2,-1,0,1,3,5,7,9,10,11 \ldots\} \\
& \text { if } u \text { is } \mathbb{\mathbb { Z }} \\
& =\{0,1,3,5,7,9\} \\
& \text { if }\{x: \mathbb{Z}: 0 \leq x \leq 93 \text { is } u
\end{aligned}
$$

$\{\overline{\{2,4,6\}}$ if $U=\mathbb{R}$? all reals except $2,4,6$.
claim

$$
\begin{aligned}
& \{x \in \mathbb{Z}: 21 \times 3 \cap\{x \in \mathbb{Z}: 9 / x\} \\
& \subseteq\{x \in \mathbb{Z}: 6 / x\}
\end{aligned}
$$

If x div. by 2 and x div. by 9 , then
x is div. by 6 .

$\frac{x}{6}$	$\frac{x \in A \cap B}{F}$	$\frac{x \in C ?}{T}$
0	T	T
3	F	F
18	T	T

Proof if $x \in A \cap B$ then $x \in C$. suppose $x \in A \cap B$. WTS $X \in C$. $\tau_{\text {want po show }}$
goal: show that $x=6 k$ for $k \in \mathbb{Z}$

