$$
(4 \cdot 19)
$$

$\frac{\text { Claim }}{x, y \in \mathbb{R}}\left\{\begin{array}{l}\text { uppose } 15 x+111 y=55057 \text { for } \\ \text { then at least one of }\end{array}\right.$ $x, y \in \mathbb{N}_{\text {is }}$ not an integer.

$$
\begin{aligned}
& \text { is not an integer. } \\
& \begin{array}{lll}
\frac{x}{0} & \frac{y}{55057} & \text { int int tot int } \\
& T 11 & F
\end{array} \\
& \begin{array}{llll}
\frac{x}{0} & \frac{y}{55057} & T & \text { int int } \frac{\text { not int }}{11}
\end{array} \\
& \frac{55042}{111} T F \\
& 0 \\
& F \\
& \frac{55057}{15} \\
& 0
\end{aligned}
$$

False Start on proof: statement
reasoning

$$
\begin{aligned}
& y=\frac{55057-15 x}{111} \\
& y=\frac{55057}{111}-\frac{15 x}{111}
\end{aligned}
$$ algebra

algebra
but how what?
Proof (by contradiction)
Aiming for a contradiction, suppose the claim is false. That is, suppose it is not the case prat at least one of x, y is not integer. That is, both x, y integer.
statement
$0057=15 x+111 y$
$x, y \in \mathbb{Z}$
$55057=3(5 x+37 y)$
$\frac{55057}{3}=5 x+37 y$
$18352 \frac{1}{3}=5 x+37 y$
$18352 \frac{1}{3} \in \mathbb{Z}$
reasoning
by claim and assumption
factoring
algebra
rewnting product and sum

But this is a contradiction, because $18352 \frac{1}{3}$ is not an integer. Thevetove, our initial assumption that both $x<y \in \mathbb{Z}$ is false.
(4.18 , but only part) let $n \in \mathbb{Z}$.
claim If n^{2} is even, men n is even \leftarrow

Phot
For contradiction, suppose the claim is false. That is,

If n^{2} is even then n is odd. Suppose n^{2} is even but n is odd.

$$
\begin{array}{ll}
n=2 k+1 \text { for } k \in \mathbb{Z} & \text { by def. of odd } \\
n^{2}=(2 k+1)^{2} & \text { by subs. } \\
n^{2}=4 k^{2}+4 k+1 & \text { algebra } \\
n^{2}=2\left(2 k^{2}+2 k\right)+1 & \text { factoring } \\
c=2 k^{2}+2 k \text { is integer prod, sum of inks } \\
n^{2}=2 c+1 \text { is in } \frac{1}{4} \\
n^{2} \text { sod } & \text { by def. of odd } \\
\end{array}
$$

This contradicts the fact mat n^{2} is even. So the assumption that n is odd is false.
(4.20)
daim $\sqrt{2}$ is not rational.
Proof for the sake of contradiction, assume that $\sqrt{2}$ is rational.
statement

$$
\sqrt{2}=\frac{n}{d} \quad n, d \in \mathbb{Z}, d \neq 0
$$ n,d ave in lowest terms (don't have a common divisor)

$$
\begin{aligned}
& 2=\frac{n^{2}}{d^{2}} \\
& \underbrace{2 d^{2}=n^{2}}_{n^{2} \text { is even }} \\
& n \text { is even } \\
& n=2 c c \in \mathbb{Z} \\
& n^{2}=4 c^{2} \\
& n^{2}=4 c^{2}=2 d^{2} \\
& \frac{2 c^{2}}{d^{2}}=d^{2}
\end{aligned}
$$

d is even
squaring both sidles algebra by def. of even by claim 4.18 def. of even squaring both sides by subs. algebra aet. of even by claim 4.18

So d and n are both div. by 2 . But this contradicts the fact tray n, d are in lowest terms. So our initial assumption that $\sqrt{2}$ is rational is false.

