Examples of propositions:

for ints n	$n(n+1)^{2}$ is even
for ints n	if n^{2} even, men uneven
for $x, y \in \mathbb{R}$	if $x \in \mathbb{Q}, y^{\prime} \in \mathbb{Q}$ men
$\sqrt{2}$ is not rational $x y \in \mathbb{Q}$,	

In proofs, we've done
n even $\Rightarrow n=2 c$ for $c \in \mathbb{Z} \Rightarrow \cdots$
("implies that")

$$
n x, n y \in \mathbb{Z} \Rightarrow n x n y \in \mathbb{Z}
$$

$\sqrt{2}$ rational $\Rightarrow \cdots \Rightarrow$ false (contradiction)
we can construct compound prop. out of smaller (atomic) prop.
p Ccan't be broken down
if n is integer them $\frac{n(n+1)^{2} \text { even }}{q}$
Syntax vs. Semantics

\rightarrow meaning of a grammatically correct
semfeuce or sentence or
statement
let p, q be prop.

formal semantics (truth table)

if / then
true iff p "forces" q (false if p doesn't it's a promise mat unevever $P_{F} T, q$ also T so $b=7{ }^{\circ}$ is P_{F}, when that promise is That is, when p is T and q is $F, p=7 q$ is ex If it rains treen the grass is wet.
 if p then q can also be untten as:
a unenever P
q is necessang for p
p only if $q /$ scut condition for q
lune never p also q lumenever p also q q

Deft 2 propositions ave logically equivalent iff their putt tables are the same
$\left[\begin{array}{ccc}p & 1 p & 17 p \\ \hline T & F & T\end{array}\right.$

$$
p \equiv 77 p
$$

pet prop p is satisfiable inf its truth table has af least one T. That is, it's the under at least one fut assignment.
Det A prop. is a tautology iff every row of the tutu fable is T
ex $\quad(p=7 q) \vee p$ scraten work

p	q
T	T
T	F
F	F

$$
\begin{array}{cc}
p=q q & (p \Rightarrow q) \vee p \\
\frac{T}{T} & \frac{T}{T} \\
\frac{T}{T} \\
\frac{T}{T}
\end{array}
$$

Q Suppose we have propositions p, i, r. hallow many vows does the tu th table 8. $\left\{\frac{n}{1}, F\right\}$ general, 2^{n}. One for seals of

$$
\{T, F\}^{n}=\underbrace{\{\tau, F\} \times\{\tau, F\} \times \cdots \times\{T, F\}}_{n \text { times }}
$$

for $n=3$,

$$
\{T, F\} \times\{T, F\} \times\{T, F\}=\{\langle T, T, T\rangle,\langle T, T, F\rangle, \ldots\}
$$

A drill question: how many rows does the truth table for $a \Rightarrow(b v(c \wedge \neg a))$ have?

$$
2^{3}=8
$$

truth table for

a	b	c	$\neg a$	$c \wedge \neg a$	$b v(c \wedge \neg a)$	$a \leadsto)(b v(c \wedge \neg))$
T	T	T				
T	T	F				
T	E	T				
T	F	F				
F	T	T				
F	T	F				
F	F	T				
F	F	F				

Precedence Rules
parentheses
1.7

$$
c \wedge 7 a
$$

2. V, \wedge, \oplus
3. \Rightarrow
4. \Leftrightarrow
break firs L to R
Def (again) 2 propositions p, q are logicallo equivalent if treir'thenturables ave tue same. we unte $p \equiv q$ if this is true.

p	q	$\neg p$	$\neg q$	$p \vee q$	$\neg(p \vee q)$	$\neg p \wedge \neg q$
T	T	F	F	T	F	F
T	F	F	T	T	F	F
F	T	T	F	T	F	F
T	T	T	F	T	T	

$$
\neg(p \vee q) \equiv \neg p \wedge \neg q
$$

De Morgan's Law: $\overline{(A \cup B)}=(\bar{A} \cap \bar{B})$

