A special compound prop.: $7 q=7 \neg p$ The contrapositive of $p=7 q$.

p	q	$p \Rightarrow q$	$\neg q$	$\neg p$	$\neg q \Rightarrow \neg p$	$q \Rightarrow p$
T	T	T	F	F	T	T
T	F	F	T	F	F	T
F	F	T	F	T	T	T

$$
p \Rightarrow q \equiv \neg q \Rightarrow \neg p
$$

Note that the converse of $p=7 q$ is not v logically equiv to $p=7 q$.

$$
p \Rightarrow q \neq q \Rightarrow p
$$

Recall proofs by contradiction. Claim 4.18 (part of it)

If $\frac{n^{2} \text { is even, then } \frac{n \text { is even. }}{p} \text {. }}{q}$,
Why did we do a proof by contradiction? let's thy a direct proof.
let n^{2} be even. WTS n is even.
$n^{2}=2 c$ for $c \in \mathbb{Z}$ del. of even
$\left.\begin{array}{l}n=\sqrt{2 c} \\ n=\frac{2 c}{n}\end{array}\right\}$ we font have amy

$$
n=\frac{2 c}{n}
$$

n is even

Claim If n^{2} is even, then n is even q
(1) For contradiction, suppose $7(p \Rightarrow q)$
(2) $1(p=7 q) \equiv p \wedge \neg q$ divect proof that $1 q \Rightarrow \neg p$
(established that ip ip
(5) noted that np rp is a contradiction
(b) $7(p=7 q)$ is false, so $p=7 q$ is true

Proof For contradiction, suppose the claims is false. That is, suppose hat n^{2} is even but n is odd. $\rightarrow 1 q$

$$
\begin{align*}
& n=2 k+1 \text { for } k \in \mathbb{Z} \\
& n^{2}=(2 k+1)^{2} \\
& n^{2}=4 k^{2}+4 k+1 \tag{3}\\
& n^{2}=2\left(2 k^{2}+2 k\right)+1 \\
& n^{2}=2 c+1 \text { for } c \in \mathbb{Z}
\end{align*}
$$

direct proof rat $1 q \Rightarrow 7 p$

$$
n^{2} \text { is odd }>P
$$

This contradicts treat n^{2} is ever. So our initial assumption that n is odd is false. sotre initial claim is tree.
Note that (3) was a direct proof of
the contrapositive. the contrapositive.
For this claim, we can give a shorter proof.

$$
p, q, r
$$

$(p \wedge q) \Rightarrow r$ is claim.
Is $\neg r \Rightarrow \neg(p \wedge q)$ the contrapositive?
Let me veurse $p \wedge q$ as z.

$$
\begin{aligned}
& z \Rightarrow \neg r \\
& \neg r=>\neg z \\
& \neg r=>\neg(p \wedge q)
\end{aligned}
$$

Claim If n^{2} is even, tree n is even.
Proof we will prove the contrapositive.
That is, if n is odd, then n^{2} is odd.

$$
n=2 k+1 \text { for } k \in \mathbb{Z} \text { del odd }
$$

$$
\begin{aligned}
& n^{2}=(2 k+1)^{2} \\
& n^{2}=4 k^{2}+4 k+1 \\
& n^{2}=2\left(2 k^{2}+2 k\right)+1 \\
& n=2 c+1 \text { for } c \in \mathbb{Z} \\
& n^{2} \text { is odd }
\end{aligned}
$$

$$
c=2 k^{2}+2 k
$$

prod., sum of ints

Note you can only use contrapositive proofs on if-tren statements.
Sometimes a direct proof is easier/simpler. sometimes not.
Proposition Suppose $x \in \mathbb{Z}$. If $\underbrace{7 x+9}$ is $\frac{\text { even } \operatorname{then} \frac{x}{} \frac{x}{9} \text { odd }}{9}$
proof (direct) Suppose $7 x+9$ is even. wis x is odd.

$$
7 x+9=2 c \text { for } c \in \mathbb{Z}
$$

del. of even

$$
\begin{aligned}
& x=2 c-6 x-9 \\
& x=2 c-6 x-2 \cdot 5+1 \\
& x=2(c-3 x-5)+1 \\
& x=2 k+1 \text { for } k \in \mathbb{Z}
\end{aligned}
$$

x odd
algebra
rewriting - 9
factoring
sums, prods of int ave int
del. of odd

Proof (by contrapositive) $\neg q \Rightarrow 7 p$
We prove the contrapositive. That is, if x is even, treen $7 x \neq 9$ is odd.
suppose x is even. Wis prat $7 x+9$ is odd.
$7 x$ is even
$7 x+9$ is odd
(4.17)

Claim suppose $y \neq 0$ if x / y is irrational then $\frac{x \text { is irrational }}{q}$ or $\frac{y \text { is irrational }}{r}$.

$$
p \Rightarrow(q \vee r)
$$

Contrapositive $\neg(q v r) \Rightarrow \neg p \equiv(\neg q \wedge \neg r) \Rightarrow \neg \neg p$

If x, y rational, then x / y is rational. Done, by the 1 problem 1 .
daim (4.16) If $\frac{|x|+|y| \neq \mid x+y) \text {, then }}{p}$ $x y<0$.

ex | x | y | $\|x\|+\|y\|$ | $\|x+y\|$ | $x y$ | q |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -2 | 3 | 5 | 1 | -6 | T T |
| 2 | 3 | 5 | 5 | 6 | $F F$ |

$$
p \Rightarrow q
$$

Proof we prove the contrapositive. That is, if $x y \geqslant 0$, then $|x|+|y|=|x+y|$.
we prove by cases.
Assume $x y \geqslant 0$, wTs $|x|+|y|=|x+y|$.
case 1: $x, y \geqslant 0$.
$|x|+|y|=x+y \quad$ by $\underset{y}{ }$ def. of $\mid 1, x \geqslant 0$,
$x+y=|x+y| \quad x, y \geqslant 0$, del. of $\mid 1$
$|x|+|y|=|x+y| \quad$ subs.
case 2: x, y (s) 0 .

$$
\begin{array}{ll}
|x|+|y|=-x+-y & \text { del. of } \mid 1, x, y \leq 0 \\
-x-y=-(x+y) & \text { algebra }
\end{array}
$$

$$
\begin{aligned}
& -(x+y)=|x+y| \quad \text { def. of } \|, x, y \leq 0 \\
& |x|+|y|=|x+y| \text { subs }
\end{aligned}
$$

$$
\text { © } x
$$

The claim holds because the cases were exhaulstive, since $x y \geqslant 0$ implies x, y either both pos. or both neg.

