Def A proposition (statement, claim) is a statement frat is either always true or always false. For a prop., its truth value is its truth or falsity?
ex y $p=2+2=4$.
n \& $q=33$ is a prime number. F
\& $r=$ waded Cruzado is currently the president of $\mu s U$.

- Every integer greater tran 2 can be wn'ttech as tree sum of two primes.
vo $1+2+3+4=x$
no Don't forget to do the week 1 drills! p is true and q is false.

In pis class, our task is to learn and practice merriods of proving propositions Tor.

Def
that a proof is a convincing argument
proposition is true. A dispro of that a proposition is true. A dispro of is an argument mat a prop. is false what a proof looks like depends on the author and the audience.

Claim (from book example 4.10)
Any positive integer n is divisible by 4 if and only if its last two digits are divisible by 4
Is it a proposition? Yes!
Step 1: make sure you underst and the claim.

- positive integer
- divisible by 4

$$
1,2,3, \ldots \text { not } 0,-5,2.5
$$

- last two digits $n=4 k$ for int k.
$12=4.3$, but $9 \ldots$?
- if and only if
$1234, ~ 04, \rightarrow$ fens and ones
part 1 implies part 2
and part 2 implies part 1
If a positive integer n is divis. by 4 then
its last tho digits are div. by 4 . 4 its last tho digits are div. by 4.
If the last two digits of integer n ave div. by 4 tree n is div. by 4 .
step 2 : do some examples.
$\left.\begin{array}{cccc}\text { Step 2: do some example s. } & \text { last } \\ n & \text { last } 2 \text { digits } & \text { ndivby 4? } & 2 \text { div? } \\ 20 & 20 & 20 & =4.5 y y\end{array}\right]$ Y

Step 3: are there any special cases you can already prove?
say n is a multiple of 100 . Its last two digits are always 00 , so div. by 4 . And all multiples of 100 are div. by 4 . Nice!
Proof let $d_{k}, d_{k-1}, \cdots, d_{1}, d_{0}$ denote the digits of n.

$$
\Rightarrow 7
$$

$$
n=d_{0}+10 d_{1}+\cdots+10^{k-1} d_{k-1}+10^{k} d_{k}
$$

"this implies by def. of base 10 .

$$
\left.\begin{array}{rl}
\Rightarrow \quad & n=d_{0}+10 d_{1}+100\left(d_{2}+10 d_{3}+\cdots+\right. \\
& \quad \text { by factoring out } 100
\end{array} \quad \begin{array}{rl}
\left.10-3 d_{k-1}+10^{k-2} d_{k}\right)
\end{array}\right)
$$

by dividing born sidles by 4
$\Rightarrow \frac{n}{4}$ is an int if and only if

$$
\frac{\left(d_{0}+10 d_{1}\right)}{\left.4 \text { because both equal } 10_{k-1}+25 d^{k-3} d_{k-2} d_{k}\right) \text { is int. }}
$$

$\Rightarrow \quad \frac{n}{4}$ is int. Af (if and only if) $\frac{d o+10 d}{4}$ sums, and differences of ints are also ints.
$\Rightarrow \frac{n}{4}$ is int iff dot $10 d_{1}$ is div. by 4
$\Rightarrow n$ is div. by 4 iff its last two digits are div. by 4 .
Bet A direct proof starts from known facts or definitions and repeatedly applies $\log _{i c}$ al deduction to derive new facts and end up with the claim.
from book example 4.11
$\frac{\text { claim }}{x \cdot y}$ if x and y ave rational, then $x \cdot y$ is rational.
terms: rational $x=\frac{n}{d} \begin{array}{r}\text { unere } n, d \text { ints } \\ d \neq 0\end{array}$ exampus:

x	y	$x y$	$x, y r a t i o n a l$	$x y r a t$.
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{4}$	T	T
π	2	2π	F	F

In this proof, we will see the two-column format for' writing a proof-
proof Start by assuming mat x and y are rational. wIS (want to show) that $x y$ is rational.
statement

$$
x=\frac{n x}{d x}, \quad y=\frac{n y}{d y}
$$

where $n_{x}, d x, n_{y}, d y$ ave integers and

$$
\begin{aligned}
& d x \neq 0 \text { and } d y \neq 0 \\
& x y=\frac{n x n y}{d x d y} \\
& x y=\frac{n}{d x d y}
\end{aligned}
$$

where n is an int.

$$
x y=\frac{n}{d}
$$

where d is a nonzero int.
$x y$ is rational
reasoning
by def. of rational
by Substitution
because product of intr is int.
because product of nonzero ints is a nonzero int
$Q:$ is the converse true?
if p prem $q \leftarrow$ prop.
if q then $p \leftarrow$ converse of prop.
our original prop:
if x, y rational tree $x y$ rational.
So the converse is:
if $x y$ rational, then x, y rational.
Let's disprove by a counter example Give an x, y so that $x y$ rational but x, y are not.

$$
\begin{aligned}
& x, y \text { are not. } \quad \text { Łboinational } \\
& x=\pi, y=1 / \quad x y=1 . \leftarrow \text { rational } \\
& x=\pi, y=0 . \quad x y=0 . \leftarrow \text { rational }
\end{aligned}
$$

Airrational

Def A disproof by counter example constructs an example for which the claim is false and explains any it is false.

