So far:
whether something occus
Now: how many?
ex how many times do we have to, flip a win to get 100 heads?
In a randomly sorted array, for? how many slots is $A[i]<A[i+1]$?
det random variable
A random variable X assigns a numerical value to every outcome in the sample space s.
note: random variable is a
$X: S \rightarrow \mathbb{R}$ bad name fortis!
ex Suppose we flip a fair coin 3 times.

$$
\begin{aligned}
& S=\{H, T\}^{\}}=\{H H H, H H T, \cdots\} \\
& \operatorname{Pr}[x]=\frac{1}{8} \quad \forall x \in S
\end{aligned}
$$

Let $X=\#$ heads
$Y=1 \pm$ of consecutive T (from start)

$$
\begin{array}{ll}
x(T T T)=0 & x(T H H)=2 \\
y(T T T)=3 & y(T H H)=1
\end{array}
$$

ex Ut S be the set of all English words. let $L=\#$ letters
$L($ computer $)=8$
Det The expectation of a random variable X, denoted $\overline{\hbar[x] \text {, is the average value }}$ of X. of x.

$$
\begin{aligned}
& E[X]=\sum_{x \in S} X(x) \cdot \operatorname{Pr}[x] \\
& E[X]=\sum_{\substack{y: 3 x \in S \\
X(x)=y}} y \cdot \operatorname{Pr}[X=y]
\end{aligned}
$$

ex Counting heads in 3 cain flips

$$
\begin{aligned}
& I[X]= \sum_{x \in S} X(x) \cdot \operatorname{Pr}[X] . \\
&= X(H H H) \operatorname{Pr}[H H H]+X(H H T) \widetilde{\operatorname{Pr}[H H T]} \\
& \quad+\cdots \\
&= \frac{1}{8}(X(H H H)+X(H H T)+X(H T H)+X(H T T) \\
&+X(T H H)+X(T H T)+X(T T H)+X(T T T)) \\
&= \frac{1}{8}(3+2+2+1+2+1+1+0) \\
&= \frac{1}{8}(12)=\frac{12}{8}=1.5
\end{aligned}
$$

$$
\begin{aligned}
E[X]= & \sum_{y \in\{0,1,2,3\}} y \cdot \operatorname{Pr}[X(x)=y] \\
= & 0 \cdot \operatorname{Pr}[0 \text { heads }]+1 \cdot \operatorname{Pr}[1 \mathrm{head}]+ \\
& 2 \cdot \operatorname{Pr}[2 \text { heads }]+3 \cdot \operatorname{Pr}[3 \text { heads }] \\
= & 0 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{8}=\frac{3+6+3}{8}=\frac{12}{8}
\end{aligned}
$$

Theorem 10.19 Lineantry of Expectation Let S be a sample space and $X: S \rightarrow \mathbb{R}$, $Y: S \rightarrow \mathbb{R}$ be any pro random variables.
Then $E[X+Y]=E[X]+E[y]$.
Q any does the " t " made sense here?
ex flip a p-biased $\operatorname{win}(\operatorname{Pr}[n]=p) 10$ times. what is the expected \# of heads?
let $S=$ all outcomes of the 10 flips
let $X(x)$ be \# heads in outcome x.

$$
x=H T T H H T H H T T, \quad X(x)=5
$$

easier way: let $x_{1}, x_{2}, \ldots, x_{10}$ be random
variables:

$$
x_{i}=\left\{\begin{array}{l}
1 \text { if itch flip H } \\
0 \text { otherwise }
\end{array}\right.
$$

So total $\#$ heads is $X_{1}+X_{2}+\cdots+X_{10}$

$$
E[X]=E\left[x_{1}+x_{2}+\cdots+x_{10}\right]=\sum_{i=1}^{10} E\left[x_{i}\right]=\sum_{i=0}^{10} p=10 p .
$$

ex suppose we hash 1000 elements into a 1000 -slot table using a random hash function, resolving collisions by chaining.

$$
\begin{aligned}
& h(1)=55 \\
& h(2)=967 \\
& h(3)=55 \\
& h(4)=1
\end{aligned}
$$

How many empty slots do we expect?
let S be all outcomes: all ways of hashing
lo00 elements into the table. 1000 elements into the table.
lea X be the random variable counting \# of empty scots.
Q unich x has $X(x)=0$?

$$
X(x)=999 ?
$$

is there an $x \in S$ st. $X(x)=1000$?
$\operatorname{Pr}[X(x)=5]$ is... hard to figwe out.
$\operatorname{Pr}[$ slot i is empty $]=$
$=\operatorname{Pr}$ [none of the 1000 elements hashestai]
$=\operatorname{Pr}[$ even g element $j \in\{1,2, \ldots, 1000\}$ hashes to slog other tran i]

$$
=\left(\frac{999}{1000}\right)^{1000} \approx 0.3678
$$

let $x_{i}= \begin{cases}1 & \text { if slot } i \text { empty } \\ 0 & \text { if soot i full }\end{cases}$

$$
E\left[\sum_{i=0}^{1000} x_{i}\right]=\sum_{i=0}^{1000} E\left[x_{i}\right]=1000 \cdot 0.3678=367.8 .
$$

