This document contains explanations of notation and definitions that we may go over quickly in lecture. If you were confused about notation or think you missed a definition, look here!
$1 / 20$

- Def An integer n is divisible by integer m if there exists an integer k such that $n=m k$.

We sometimes say "m divides n " to mean the same thing as " α is divisible by m !"
we use the shorthand m /n to say m divielesn.
Another equivalent definition of divisibility is that m / n if and only if $\frac{n}{m}$ is an integer.
ex $0^{k^{n}}$ is divisible by $2^{k^{m}}$ because we can choose $k=0$ and write $0=2 \cdot 0$.
5 is not divisible by 4 because trave is no integer k so that $5=4 \mathrm{k}$.
-33 is divisible b II because $-33=11 \cdot(-3)$.

- The ellipsis (...) notation in math:
... means "continuing onward in the same manner".
So $1,2, \ldots, 99,100$ means "cell of the integers between land 100."

By convention, we put tho items at the start (here, 1 and 2) and two at the end to be ven y explicit about the pattern. But in general look at examples and use your own judgment about how to use...
ex $-100,-98, \ldots,-4,-2$ even negative integers between
-100 and -2 - 100 and - 2

$$
\ldots-2,-1,0,1,2, \ldots \text { all integers }
$$

$c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2} \quad$ polynomials up to
$c_{0} x_{0}+C_{1} x_{1}+\cdots+C_{k-1} x_{k-1}+C_{k} x_{k}$ polynomials of degree k

- Exponent math rules.
we can simplify expressions with exponents as long as trey shave the same base!

$$
\begin{gathered}
x^{10} \cdot x^{11}=x^{21} \\
\frac{10^{k}}{100}=\frac{10^{k}}{10^{2}}=10^{k-2}
\end{gathered}
$$

$1 / 23$

- Def A rational number is a real number that can be expressed as a ratio n / m of integers n and m where $m \neq 0$.
ex 1.2 is rational because we can choose $n=6$ and $m=5$ so mat $1.2=n / m=6 / 5$.
-5 is rational because $-5=-5 / 1$.
π is not rational.
$0.33 \ldots$ is rational because it equals $1 / 3$.
a Def The absolute value of a number x. written $|x|$, is the distance from x to 0 , disnegarding the sign of x.
ex
- Def Given a proposition of the form "if a tree b ", its converse is the proposition "if b tree a ".
$2 / 1$
- Deft An integer n is odd rf were is an integer k such mat $\frac{n}{n}=2 k+1$.
ex -11 is odd because $-11=2(-6)+1$
10 is not odd because there is no integer k so mat $10=2 k+1$.
$2 / 6$
- Pet A positive integer $n>1$ is prime if the only positive integas that evenly divide n ave one and n itself. A positive integer $n>1$ is composite if it is not prime.
$3 / 20$
- Tue logarithm base x of y is the number we mus长 raise x to to get y.
ex

$$
\begin{aligned}
& \log _{2} 16=4 \text { because } 2^{4}=16 \\
& \log _{10} 100=2 \text { because } 10^{2}=100 \\
& \log _{2} 100=6.64
\end{aligned}
$$

some \log mes:

$$
\begin{aligned}
& \log _{b} x^{k}=k \log _{b} \\
& \log _{b} b=1 \\
& \log _{b} x / y=\log _{b} x-\log _{b} y \\
& \log _{b} x y=\log _{b} x+\log _{b} y
\end{aligned}
$$

$\log _{b} x=\frac{\log _{a} x}{\log _{a} b} \approx$ change of base rule

- intuitively, \log is the opposite of exponentiation (raising something to a power)
- it is very important in CS
$3 / 22$
- $f(\cdot)$ notation: just helps us be clear about what f is referring to. For big 0, we can wite $O(\cdot)$ so we know that something goes in the parentheses.
$3 / 24$
- Summation rues:

$$
\sum_{i=1}^{n} c=n c
$$

n constant

$$
\sum_{i=1}^{n} a_{i}+b_{i}=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}
$$

ming mat depend on i

$$
\sum_{i=1}^{n} n=n^{2}
$$

$\sum_{i=1}^{n} i=\frac{n(n-1)}{2}$ we proved this $w /$ induction!

