(1)
$g: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $g(a)=1$
Domain $=\mathbb{2}$
codomain $=\mathbb{Z}$
range $=1$

1) $\forall a \in \mathbb{Z} \quad g(a)$ is defined as 1
2) To show $\forall a \in \mathbb{Z}, g(a)$. does not produce 2 diff. outputs. WTS that if $g(a)=a$ and $g(a)=b$ then $a=b$.
statement
$a=1$
$b=1$
$a=b$
reason
by deft of g
by def of g substitution.
3) Notice $1 \in \mathbb{Z}$, therefor for all $a \in \mathbb{Z} g(a) \in \mathbb{Z}$ because this function satisfies these 3 properties, it is a function, based on the definition of function.

$$
p: \mathbb{z}^{\geq 0} \rightarrow \mathbb{Z} \quad p(x)=x-1
$$

THIS is not a fungrion. it violates rube 3. Proof by counterexample

LET $x=0$, WHILInG IS IN THE DOMAIN.

$$
p(0)=(0)-1=-1
$$

-1 IS NOT IN THE CODDMANS \mathbb{Z}^{30}, VIOLATING PROPERTY 3.
$E x: f: \notin \rightarrow \notin \geq 0$ defined bg $f(x)=$ the numben
$f: \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ dectimal $f(x)=((x, y): x+3 y-4)$
domain: \mathbb{R}
comin : $\mathbb{R}^{2} \times \mathbb{A}$
Nuye : $\left\{\begin{array}{c} \\ \{(x, y): x+3 y=4\}\end{array}\right.$
Rous

1) $\forall x \in \mathbb{R} f(x)$ is secind us $-\frac{1}{3} x+\frac{4}{3}$
2) $\forall x \in \mathbb{R} f(x)$ does no have 2 differen outpaes wis $f(x)=a$ i $f(x)=b$ then $a=b$
suppose $f(x)=a$ i $f(x)=b$

$$
\begin{array}{ll}
a=-\frac{1}{3} x+\frac{4}{3} \quad b=-\frac{1}{3} x+\frac{4}{3}, & \text { ded of } f \\
a=b & \text { Substitution }
\end{array}
$$

3)

$$
\begin{aligned}
& \forall x \in \mathbb{R}, \quad f(x) \in \mathbb{R} x \mathbb{R} \\
& f(x)=-\frac{1}{3} x+\frac{4}{3} \\
& \xi(x, y): x+3 y=4\} \in \mathbb{R}^{2}
\end{aligned}
$$

becambe additri as provece of * gives Given Range
$f: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined by $f(x)=\{(x, y): x+3 y=4\}$
domain: \mathbb{Z} codomin': $\mathbb{Z} \times \mathbb{Z}$
This is not a function, because violates (3)
Let $x=2$, which is an int

$$
f(2)=\left\{\left(2, \frac{2}{3}\right):(2)+3\left(\frac{2}{3}\right)=4\right\}
$$

$f(x)=\left(2, \frac{3}{3}\right) \notin \mathbb{Z} \times \mathbb{Z}$
2) $E: \mathbb{Z} \rightarrow\{T, F\}$ defined by $E(x)\left\{\begin{array}{l}T \text { is even } \\ F \text { is od } d\end{array}\right.$

Domain: Zु. codomain: all Even numbers (an) 1) all int ore either sod or Even $E(x)$ is dethicd for all \mathbb{Z}
2) for each $x \in E$, all int are either even or odd but not both Lucynote: $E(x) \notin \mathbb{Z}$
3) $\forall x \in \mathbb{D}, E(x) \in \mathbb{Z}$ $E(x)=\{T, F\}$, for all ins
note from lucy: this is good, but if we wanted to be ven g formal, here is now we could der it:
2) We want to show that $\forall x \in \mathbb{Z}, E$ does not produce 2 diff. outputs. To do this, we show prat if $E(a)=Y$ and $E(a)=z$, then $a=b$.
we prove using cases.
case 1: Let $Y=T$. Then a is even, so Z is also T. so $Y=Z$.
case 2: Let $Y=F$. then a is odd, so Z is also F. so $Y=z$.
since Y is either T or F, the cases are exhaustive.

