Warmup: Let's label each node w) its degree.

What do we ustice about me degrees?

Theorem 11.8 Handshaking Lemma let $G=(V, E)$ be an undirected graph. Then

$$
\sum_{V \in V} \operatorname{deg}(V)=2|E|
$$

$8 x$

$$
\begin{array}{lcc}
|E| & 2|E| & \sum_{E \in V} \operatorname{deg}(v) \\
0 & 2 \cdot 0=0 & 0 \\
1 & 2 \cdot 1=2 & 2 \\
9 & 2 \cdot 9=18 & \begin{array}{l}
2+2+2+5+4+3 \\
\\
\end{array} \\
& & 18
\end{array}
$$

Pf let $G=(V, E)$ be an undirected graph. Notice that every edge is incident to exactly two nodes, meaning that it contributes

1 to the degree of exactly 2 nodes. So

$$
\sum_{V \in V} \operatorname{deg}(V)=2|E| .
$$

More formally, consider this psendocode for computing the degrees of all nodes in G :
$d u=0$ fr all $u \in V$
for each edge $\{u, v\}$ in E :

$$
\begin{aligned}
& d u=d u+1 \\
& d v=d v+1
\end{aligned}
$$

1. Is the algontrim correct?
2. What is $\sum_{u \in v} d_{u}$ after i iterasrons of the for loop?

$$
\sum_{u \in V} d u=2 i
$$

We run fere for $100 p|E|$ times, so $\sum d u=2|E|$, and $d u=\operatorname{deg}(u) \quad \forall u \in V$.
Q
what does the handshaking leurma say about
neal-life handshakes? neal -life handshakes?

Corollary (fact that follows simply from a
previous theorem) previous theorem)
Let mod denote the number of nodes whose degree is odd. Then node is even.

PF Aiming for a contradiction, suppose that hod is odd.

$$
\begin{aligned}
\sum_{v \in v} \operatorname{deg}(v) & =\underbrace{}_{\substack{v \in v: \\
\operatorname{deg}(v) \text { odd }}} \operatorname{deg}(v)
\end{aligned} \underbrace{\sum_{\text {even even is even }} \operatorname{deg}(v)}_{\begin{array}{c}
\text { even } b c \\
\text { deg(v)even }
\end{array}}
$$

But wis contradicts that $\sum_{V \in V} \operatorname{deg}(v)=2|E|=$ even.
Q is me handshaking lemma true for directed graphs? what would the corresponding claim be?

