Which function is "smaller"?

In (S) we focus on "grows no faster tar" as an approximation of "smaller man."
Let. $f: \mathbb{R}^{\geqslant 0} \rightarrow \mathbb{R}^{\geqslant 0}, g: \mathbb{R}^{\geqslant 0} \rightarrow \mathbb{R}^{\geqslant 0}$.
we say $f=O(g)$ " f is big 0 of g " if

$$
\exists c>0, n_{0} \geqslant 0 \text { s.t. } \forall n \geqslant n_{0}: f(n) \leq c \cdot g(n) \text {. }
$$

Note: $f=O(g)$ is standard notation, but it uses " =" to mean "has me property."
To prove $f(n)=O(g(n))$, we need to construct n_{0}, c s.t. $\forall n \geqslant n_{0}: f(n) \leq c \cdot g(n)$
To prove $f(n) \neq O(g(n))$, we need to show that $\forall n_{0} \geqslant 0, c>0: \quad \exists n \geqslant n_{0}: f(n)>c \cdot g(n)$.

Examples: all of the fllowing functions f are $O(n)$.

uTS $f(n)=n$ is $O(n)$.
let $n_{0}=0, c=3$.

$$
\forall n \geq 0: f(n)=n \leq 3 n
$$

weTs $f(n)=2 n$ is $O(n)$.
let $n_{0}=0, c=3$.
$\forall n \geqslant 0: 2 n \leqslant 3 n$
$3 x$
UTS $f(n)=x+8$ is $0(n)$.
$f(x)=x+8$
Suppose we want to use $c=3$. What n_{0} can we choose?
could just guess + check: how about no $=10$?
$3 n=30$ when $n=10$ so $n_{0}=10$ wonks.
$n+8=18$ urea $n=10$
smallest no? plug in:

$$
\begin{aligned}
n_{0}+8 & =3 n_{0} \\
8 & =2 n_{0} \\
4 & =n_{0}
\end{aligned}
$$

any $n_{0} \geqslant 4$ would work.
let $n_{0}=4, c=3$. $\forall n \geqslant n_{0}: n+8 \leq 3 n$. i

aTS $f(n)=10$ is $O(n)$.
let $n_{0}=3.4, c=3$.

$$
\forall n \geqslant 3.4: 10 \leq 3 n
$$

weTs $f(n)=O(n)$.
Does $n_{0}=4, c=3$ work?
we would need $\forall n \geqslant 4$:

$$
0.5 n+11 \leq 3 n .
$$

but when $n=4,0.5 n+11=13$

$$
13.5 \leq 15
$$

$$
\begin{aligned}
& 0.5 n+11=13 \\
& \text { and } 3 n=12 .
\end{aligned}
$$

let $n_{0}=5, c=3 . \quad \forall n \geqslant n_{0}: f(n) \leq c \cdot n$.

Example: $n^{3} \neq O\left(n^{2}\right)$.
Proof: WTS $\forall c>0, n_{0} \geq 0: \exists n \geq n_{0}: n^{3}>c \cdot n^{2}$ we prove by showing how to construct n for any c, no.
let $c>0$ and $n_{0} \geqslant 0$. We need $n \geqslant n_{0}$ s.t. $n^{3}>c \cdot n^{3}$. Let $n=(c+1)$. Then $n^{3}=(c+1)^{3}$ and $c \cdot n=c(c+1)^{2}$, so $n^{3}>c \cdot n^{2}$.
we have n s.t. $n^{3}>C n^{2}$, but also need $n \geqslant n_{0}$. let $n=\max \left\{n_{0}, c+13\right.$. Now $n \geqslant n_{0}$ and $n^{3}>\mathrm{Cn}^{2}$.

If $n_{0}=100$ and $c=5, n=6$ would not be a valid n.
Logantums for positive real number $b \neq 1$ and neal number $x>0, \log _{b} x$ is the real number y st. $b^{y}=x$.
$\log _{4} 16$ me ans "the number we need to raise 4 to to gel $16^{\prime \prime}$
lemma 6.7 let $b>1$ and $k \geqslant 0$.
$\log _{b}\left(n^{k}\right)=O(\log n)$. Base, exponents in logs don't matter asymptotically.
ex

$$
\log _{10} n=O\left(\log _{2} n\right)^{15}
$$

Proof WTS $\exists c>0, n_{0} \geqslant 0$ s.t. $\forall n \geqslant n_{0}$:

$$
\log _{b}\left(n^{k}\right) \leq c \log _{a} n .
$$

Note treat cause anysing, so 5 we willonop later

$$
\begin{aligned}
\log _{b}\left(n^{k}\right) & =k \cdot \log _{b}(n) \\
& =\frac{k \log _{a} n}{\log _{a} b}
\end{aligned}
$$

by def. of logs + exponents change of base rule $\log _{b} x=\frac{\log _{a} x}{\log _{a} b}$
Now take $n_{0}=1$ and $c=\frac{k}{\log _{a} b}$.
$\forall n \geq 1, \log _{b}\left(n^{k}\right)=\frac{k \log _{a} n}{\log _{a} b} \leq \frac{k}{\log _{a} b} \log _{a} n$,
so $\log _{b}\left(n^{k}\right)=o\left(\log _{a} n\right)$.
Since a could be anything, we drop it.
Coma let $b, d>1$. If $d<b$ then $b^{n} \neq O\left(d^{n}\right)$. ex $3^{n} \neq O\left(2^{n}\right)$.
This emma tells us that tine base of an exponent does waller, asymptotically.

