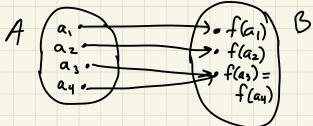
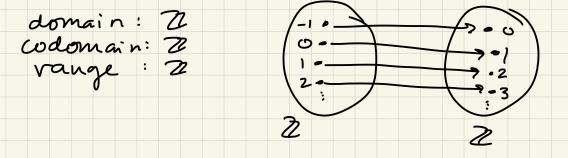

Det let A, B be sets.


f: A ->B is a <u>function</u> iff it assigns to earna eA a single value beB, denoted f(a).

Equivalently, f has me 3 properties: i) for each atA, f(a) is defined. $A\left(\frac{i}{a}\right)^{f(a)}$

2) for each $a \in A$, f(a) does not produce $2 \operatorname{diff}$. $\operatorname{outputs}$. $A \xrightarrow{f(a)=b} A \xrightarrow{f(a)=b=c} \operatorname{diff}(a) = b=c$ $a \xrightarrow{f(a)=c} A \xrightarrow{a} \operatorname{diff}(a) = b=c$


no and b7c

A is called the domain of f B is (alled the <u>codomain</u> of f The range of f is $2f(a): a \in A^3$

we can represent functions in a table: CEEA / f(a) EB E some elts of B may have more man one $f(a_1)$ a1 a, $f(a_2)$ NOW ON SEND NOW? $f(a_3)$ 93 f (ay) ૧િવ • all elts of A have exactly one vou $ex f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = x^2$. domain: P codomain: P range: P²⁰ note that $\forall x \in \mathbb{R}, x^2 is defined (property 2)$ ∀x ∈ [R, f(x) = x², a single value (property 2) VXER, f(X)ER, because X²ER (Property 3) ex is L: R-IR defined by L(x) = log (x) a function? (og (o) is undefined. ex S: Z -> Z dlf. by S(x)=x+1 ("successor function")

Prop 1: V

Prop 2: for all a EZ, if S(a) = b and S(a) = c, men b = c.

Suppose s(a) = b and s(a) = c. WTS b = c.

5(a) = a+1=b, s(a) = a+1=c det of s

subs.