Deft A predicate is a Boolean-valved function $P: U \rightarrow\{T, F\}$ for a set U. That is, a rule/ property that a particular entity may / may not have.
ex is Even (n) $:= \begin{cases}T & \text { if } n \text { even } \\ & n \in \mathbb{Z}\end{cases}$

$$
\begin{aligned}
& \begin{array}{ll}
\text { is Prime } \\
n \in \mathbb{Z}^{>0}
\end{array}(n):= \begin{cases}T & \text { if } n \text { prime } \\
F & \text { if } n \text { not prime } \\
\text { (composite) }\end{cases} \\
& \text { is Subset }(A, B):= \begin{cases}T & \text { if } A \subseteq B \\
F & \text { if } A \nsubseteq B\end{cases} \\
& \text { is } \operatorname{Rat}(x, y):= \begin{cases}T & \text { if } x / y \in \mathbb{Q} \\
F & \text { if } x / y \in \mathbb{Q}\end{cases}
\end{aligned}
$$

On its our, a predicate $P(x)$ has no turns value. The value x is unbound.

Can make it a proposition by applying it to a specific entity.
ex

$$
\begin{array}{lll}
\text { is Even (n) } & \times & \text { is Even (1) } V \\
\text { isPrime }(n) & \times & \text { is Even (2) } V
\end{array}
$$

Can also use quantifiers:
$\underline{e x}$ breve exists int n sit. is Even $(n) \sqrt{ } T$ for all int n is Even (n)

Universal Quantifier \forall "for all"

$$
\forall x \in S: P(x)
$$

"for all x in $s, P(x)$ is the" \checkmark the of $p(x)$ evaluates to T for even $x \in S$
Existential Quantifier \exists "there exists" $\exists x \in S: P(x)$
"trave exists x in S s.t. $P(x)$ is true"
true iff $f(x)$ evaluates to T for some $x \in S$
These quantifiers $\forall x$ or $\exists x$ bind x.
ex

$$
\begin{aligned}
& \forall x \in \mathbb{Z}: x \text { is even } \\
& \forall x \in \mathbb{Z} \text { : } 2 x \text { is even } \\
& \forall n \in \mathbb{Z} \text { : if } n^{2} \text { eveentren } \\
& n \text { even } \\
& \forall x \in \mathbb{Z} \text { : if } 7 x+9 \text { even then } \tau \\
& x \text { odd } \\
& \forall x, y \in \mathbb{R} \text { : if } x / y \text { irrational then } T \\
& \forall A, B:(A \leq B) \Rightarrow(A-B) \\
& \exists n \in \mathbb{Z} \\
& \therefore(A \leq B) \Rightarrow(A-B)=\varnothing \\
& : n \text { is not even } \\
& T \quad(n=3) \\
& \begin{array}{l}
\exists n \in \mathbb{Z} \\
\exists n \in \mathbb{Z}
\end{array} \\
& : n \text { is prime } \\
& \text { : } n \text { is even and } n \\
& { }_{F}^{T}(n=3) \\
& \exists x, y \in \mathbb{Q} \\
& \text { is odd } \\
& x \cdot y \in \mathbb{Q} \wedge \neg(x, y \in \mathbb{Q}) T
\end{aligned}
$$

Precedence:
$-\forall, \exists$ highest

- use () to override or for clanty
ex

$$
\begin{aligned}
& (\forall x \in S: P(x)) \Rightarrow(\exists y \in S: P(y)) \\
& \forall x \in S:[P(x) \Rightarrow \exists y \in S: P(y))
\end{aligned}
$$

We have to be canetyl when going between English language and quantified statements. ex All students do not pay full tuition. an attempt: \forall students x : x does not pay full tuition
but this means that no student pours full tuition - not what we meant!
we want "not all Students pay fIll tuition"
7 (\forall students x : x does not pay fIll tuition)
ex All ints are not even $\forall x \in \mathbb{Z}: 7$ (i sEven (x)) Not all int ave even $7(\forall x \in \mathbb{Z}$: is Even $(x))$
≥-1 of int x and y ave even.
$\stackrel{\text { is Even }}{ }(x) \vee$ is Even (y)
x is even but y is odd
三 is Even $(x) \wedge$ ais Even (y)
unbound Variables
ex n^{2} even $\Rightarrow n$ even
true $\forall n$
n even $\Rightarrow 6 / n$
false for somen
On: n even $\Rightarrow 61 n F$
In: n even $\Rightarrow 6 / n T$
If a quantifier is missing, we assume \forall.
ex $31 x$ becomes $\forall x: 3 \mid x$

Det An expression is filly quantified if it has no unbound varia boles. (note mat we can assume \forall if unissing)
ex all primes are odd

$$
\forall p \in \text { Primes: is odd }(p)
$$

$$
\text { (} \forall p \in \mathbb{Z}:[\text { isprime }(p) \Rightarrow \text { is odd }(p)]
$$

nope! we can dis prove $w / p=2$, ie., $\exists p \in$ Primes : 1 is odd (p)
So in general:
$\begin{array}{rl}f & x \in S: P(x) \text { is disproved by showing } \\ \exists x \in S: \perp P(x) \text {. }\end{array}$ $\exists x \in S: \perp P(x)$.

