Randomness + probability uses in C 5 :

- randomized al gontums
- data structures using randomness
- modeling real-word phenomena

But first, we need to learn to count!
Sum rule: if $A \cap B=\varnothing$, then $|A \cup B|=|A|+|B|$
Product rule: The number of pairs $\langle x, y\rangle$ with $x \in A, y \in B$ is $|A| \cdot|B|$.

$$
|A \times B|=|A| \cdot|B|
$$

ex A restaurant has 2 lunch specials.
(1) Soup or salad
(2) soup and salad

If $A=$ set of soups $=\{$ chicken noodle, tomato, ...\}
$B=$ set of salads = \{caesar, cobb, house...\}
How many possibilities are there for (1) and (2)?
(1): $|A|+|B|$
(2) : $|A| \cdot|B|$

More general product rule:

$$
\left|A_{1} \times A_{2} \times A_{3} \times \cdots \times A_{k}\right|=\left|A_{1}\right| \cdot\left|A_{2}\right| \cdot\left|A_{3}\right| \cdot \cdots \cdot\left|A_{k}\right|
$$

ex How many 32-bit stings are trave?

$$
\begin{aligned}
& \underbrace{010 \cdots 001}_{32-6 \text { it string }} \\
& \left|\{0,1\}^{32}\right|=\underbrace{\mid\{0,13|\cdot|\{0,1\}|\cdots|\{0,1\} \mid}_{32 \text { times }}=2^{32}
\end{aligned}
$$

Def Given some random process, the sample space S is the set of all possible outcomes. salso called prob. distribution
A probability function $\operatorname{Pr}: S \rightarrow \mathbb{R}$ describes the fraction of the time that $s \in S$ occurs.

$$
\begin{aligned}
& \sum_{s \in S} \operatorname{Pr}[s]=1 \\
& \operatorname{Pr}[s] \geqslant 0 \quad \forall s \in S
\end{aligned}
$$

ex

- flipping a coin

$$
\begin{gathered}
S=\{\text { heads, tails }\} \\
\operatorname{Pr}[\text { heads }]=0.5 \quad \sum_{s \in S} \operatorname{Pr}[s]=0.5+0.5=1 \\
\operatorname{Pr}[\text { tails }]=0.5 \quad
\end{gathered}
$$

- drawing a card

$$
\begin{aligned}
& S=\{2 \text { clubs, } 3 \text { clubs, } . .\} \\
& \operatorname{Pr}[s]=\frac{1}{5} \quad \forall s \in S
\end{aligned}
$$

- flipping 2 coins

$$
S=\{\langle H, H\rangle,\langle H, T\rangle,\langle T, H\rangle,\langle T, T\rangle\}
$$

each has probability 0.25
all of these have uniform probability. But probability functions can be nou-uniform.
ex let $S=\{0,1,2, \ldots, 7\}$. Choose from S by flipping 7 coins and counting \nRightarrow of H.

$$
H H H H H H H \rightarrow 7
$$

$$
\begin{aligned}
& \operatorname{Pr}[4] \approx 0.2734 \\
& \operatorname{Pr}[7] \approx 0.0078
\end{aligned}
$$

Det A set of outcomes is called an event.

$$
E \subseteq S, \operatorname{Pr}[E]=\sum_{S \in E} \operatorname{Pr}[S]
$$

ex
when flipping 2 coins, the probability that at least one is H is $0.25+0.25+0.25=0.75$. wren drawing I card, the probability that
it is an ace is $4 / 52=1 / 13$ it is an ace is $4 / 52=1 / 13$.

Theorems 10.4: properties of event probs. let S be a sample space and $A \subseteq S, B \subseteq S$ events. LeA $\bar{A}=S-A$ be the complement of event A.

$$
\begin{array}{ll}
\operatorname{Pr}[S]=1 & \operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A] \\
\operatorname{Pr}[\phi]=0 & \operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
\end{array}
$$

ex

- Wren drawing 1 card, what is tree probability that it's not an ace?
$S=\{$ all cards $\}$
$A=\{$ A clubs, A spades, A hearts, A diamonds $\}$

$$
\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]=1-0.75=0.25
$$

- when drawing 1 card, what's the pros. that it's a Q or a heart?
$A=\{Q$ clubs, Q hearts, Q diamonds, Q spades $\}$
$B=\{$ all cards heart $\}$

$$
\begin{aligned}
& A \cup B=\{\text { all heats }+3 \text { queens }\} \\
& A \cap B=\{Q \text { heats }\} \\
& \begin{aligned}
\operatorname{Pr}[A \cup B] & =\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B] \\
& =4 / 52+13 / 52-1 / 52=16 / 52
\end{aligned}
\end{aligned}
$$

