Intro to Graphs
Deft An undirected graph $G=(V, E)$ is a non-empty set v of nodes/vertices and a set $E=\{\{u, v\}: u, v \in v\}$ of edges joining pairs of nodes.
ex.
(A)

$$
\begin{aligned}
& V=\{A\} \\
& E=\varnothing
\end{aligned}
$$

(A) $-(B)$

$$
\begin{aligned}
& V=\{A, B\} \\
& E=\{\{A, B\}\}=\{\{B, A\}\}
\end{aligned}
$$

$$
\begin{aligned}
& V=\{A, B, C, D\} \\
& E=\{\{A, B\},\{B, C\},\{C, B\},\{B, D\}\}
\end{aligned}
$$

non-ex.
A- all edges need 2 endpoints
real-wond examples:

- facebook friend "nodes = people rages unenthey ave
- blood-related

Q what property would a relation need to be representable as an undirected graph?
Def A directed graph $G=(V, E)$ has set of vertices and edges $t \subseteq V \times V=\{\langle u, v\rangle: u, v \in v\}$ so that edges are directed from one vertex
to another.

$$
\begin{array}{r}
(A) \rightarrow(B) \quad E=\{\langle A, B\rangle\} \\
\neq f \\
(A) \leftarrow(B) \quad E=\{\langle B, A\rangle\}
\end{array}
$$

- relations are directed graphs
- functions ave directed graphs real-wond examples:
- twitter followers
- transportation networks
$S E A \rightarrow B Z N$
Deft A graph is simple if it contains no parallel edges or self-loops.
Parallel edges:

\rightarrow (B) or
self-loops: A) or AR
Example 11.3: Self-loops and parallel edges.
Suppose that we construct a graph to model each of the following phenomena. In which settings do self-loops or parallel edges make sense?

1 A social network: nodes correspond to people; (undirected) edges represent friendships.
2 The web: nodes correspond to web pages; (directed) edges represent links.
3 The flight network for a commercial airline: nodes correspond to airports; (directed) edges denote flights scheduled by the airline in the next month.
4 The email network at a college: nodes correspond to students; there is a (directed) edge $\langle u, v\rangle$ if u has sent at least one email to v within the last year.

Deft
ut $e=\{u, u\}$ or $e=\langle u, v\rangle$

- nodes u,v are adjacent or neighbors
- in a directed graph, v is an out-neignbor of u and u is an in-neignibor of v
- u and v are tree endpoints of e
- u and v are incident to e
let v be a node.

$$
\begin{aligned}
\operatorname{degree}(v)=\operatorname{deg}(v)=\operatorname{d}(v) & =\# \text { neighbors of } v \\
& =|\{u \in v:\{v, u\} \in E\}|
\end{aligned}
$$

for a directed graph,

$$
\begin{aligned}
& \text { indeg }(v)=\text { \# of in-neignbors } \\
& \text { out } \operatorname{deg}(v)=\# \text { of out-neismbors }
\end{aligned}
$$

ex

A,B adjacent D, C not adjacent A, B ave the endpoints of edge $\langle A, B\rangle$
A, E are incident to edge $\langle A, E\rangle$
F is an in-neignbor of B
E is an out-neignbor of A

