Def A path in $G=(V, E)$ is a sequence of nodes $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ s.t.

- $\forall i \in\{1,2, \ldots, k\}: u_{i} \in V \quad u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k}$
- $\forall i \in\{1,2, \ldots k-1\}$ :
$\left\langle u_{i}, u_{i+1}\right\rangle \in E$
(or $\left\{u_{i}, u_{i+1}\right\} \in E$ if undirected)
Q does this definition allow repeated nodes in a path?


$$
\begin{aligned}
& u_{1}=a \\
& u_{2}=b \\
& u_{3}=c \\
& u_{4}=b \\
& u_{5}=c \\
& u_{6}=d
\end{aligned}
$$

A path is simple if all of its nodes are distinct.

The length of a path is $\#$ edges $k-1$. we say a pain traverses its rages.
The shortest pain from node $u$ to node $u$ is the path of minimum length from $u$ to $v$.

$$
d(u, v) \operatorname{dist}(u, v)
$$

The distance between nodes $u, v$ is the length of the shortest path between $u, v$.
A graph is connected if $\forall u, v \in V \quad \exists$ a path from $u$ to $V$.
ex

$\begin{array}{rll}\text { between } A, D: & A D & 1 \\ & A C D & 2 \\ & A C E Z D & 4\end{array} \quad \operatorname{dist}(A, D)=1$

Def A cycle $\left(u_{1}, u_{2}, \ldots, u_{1}, u_{1}\right)$ is a path of length $\geqslant 2$ from $u$, to $u$, that does not traverse the same node twice.

A cycle is simple if each node is distinct. A graph is acydic if it contains no cycles.
ex 0-0-0-0 acyclic
 acyclic

not acyclic

acyclic

$a \rightarrow b \rightarrow d \quad$ not acyclic

How many cycles does have?
1 or 3 ? we consider $\langle a, b, c\rangle,\langle b, c, a)$,
$\langle c, a, b\rangle$ to be all same cycle.
lemma (1.33 if $G=(V, E)$ is acyclic then $\exists v \in V$ st. $\operatorname{deg}(v)=0$ or $\operatorname{deg}(v)=1$.
Pf we give a proof by construction vic an algontrm that, given any acyclic graph, finds a degree 0 or degree 1 node.
alg: Let $u_{0}=$ any node in $G$
unite current node $u_{i}$ has unvisited neighbors:
$e_{i=i+1} u_{i+1}$ = such a neigh bor

$$
i=i+1
$$

return ni
(example:


Given an acyclic graph $G$, led $t$ be the node returned by tue alg.
there are 2 cases:
Case 7: $t=u_{0}$. $u_{0}$ so $\operatorname{deg}(t)=0$ So $G$ has a node of degree $0, t$.
Case $2: t=u_{k}, k \geqslant 1$.

$$
u_{0}-u_{1} \cdots u_{k}
$$

We WTS $\operatorname{deg}(t)=1$.
Since $t$ is last in the sequence $\left\langle u_{0}, u_{1}, \ldots, u_{k}\right\rangle$ there is ho edge from $t$ to any unvisited
node.
If $\exists$ edge from $t$ to any node other than $u_{k-1}$ then it is some node in $\left\{u_{0}, u_{1}, \ldots, u_{k-2}\right.$.

$$
u_{0}-u_{1}-\cdots u_{j} \cdots-u_{k-1}-u_{k}
$$

But then $\left\langle u_{i}, \cdots, u_{k}, u_{i}\right\rangle$ is a cycu, contradicting mat $G$ is acyclic.
So $t$ has only one edge, the edge to $u_{k-1}$.
so deg $(t)=1$. Sodeg $(t)=1$.
Since the cases are exhaustive, the claim is proved.
undirected
Det A tree is $a^{2}$ graph that is connected and acyclic.
ex



$$
0
$$


$x$ but is a forest (undirected, acyclic graph)
The 11.35 Let $T=(V, E)$. Then $|E|=|V|-1$. Pf : in book. (by matreenatical induction)

Corollary 11.36 let $T=(V, E)$. Then

1. adding any edge $e \in E$ to $T$ creates a cycle
2. rem owing any edge $e \in E$ from $T$ disconnects the graph
