Note:
$f: A \rightarrow B$ is onto $\Rightarrow \quad|A| \geqslant|B|$
$f: A \rightarrow B$ is $1: 1 \quad \Rightarrow \quad|A| \leq|B| \notin$
$f: A \rightarrow B$ is a bijection $\Rightarrow \quad|A|=|B|$ recall deft:
f onto: $\forall b \in B \quad \exists a \in A: f(a)=B$
f $1: 1: \forall a, a^{\prime} \in A \quad a \neq a^{\prime} \Rightarrow f(a) \neq f\left(a^{\prime}\right)$
Theorem $a .13$ (Pigeonhole Principe, PHP) Let A, B be sets and $f: A \rightarrow B$ a function. If $|A|>|B|$ then there are 2 distinct $a, a^{\prime} \in A$ s.t. $f(a)=f\left(a^{\prime}\right)$.

$$
|A|>|B| \Rightarrow \exists a, a^{\prime} \in A:\left(a \neq a^{\prime}\right) \wedge\left(f(a)=f\left(a^{\prime}\right)\right)
$$

Proof The PHP is the contreupositive of 4
The "pigeon" way of thinking of the PHP: suppose you have $A=n+1$ pigeons $B=n$ pigeon cubbies each pigeon flies to a cubby.
$f($ pigeon $a)=$ pigeon a's cubby.
$\geqslant 2$ pigeons shave a cubby.

claim among 13 people, $\geqslant 2$ shave a birth ndonta.
If let A (pigeons) be the set of 13 people let B (pigeonholes) be the set of
$f: A \rightarrow B$ defined by $f($ person $a)=$
a's birth month. $=$
is f a function?

1) each a has a birr month
2) each a has just 1 birgu month
3) each bin month is in set of 12 months
vote that $\left.\begin{array}{rl}|A| & =13 \\ |B|=12\end{array}\right\} \Rightarrow|A| \angle|B|$
Thus by PHP $\exists a_{1}, a_{2} \in A$ st. $a \neq a_{1}$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$.
sotneve 2 distinct people a_{1}, a_{2} s.t. a_{1} 's
and a_{2} 's birl months are same.
claim (9.36) Let $n \geq 0$, integer.
Suppose $\exists n^{2}+1$ points in the unit square. Then $\exists 2$ points within $\sqrt{2} / n$ of each
ex $n=2$, $50 n^{2}+1=5$.
2 of these points are wimin $\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$ of call other

Pf let A be the set of $n^{2}+1$ points.
Let B be tree set of n^{2} in $\times 1 / n$ subsquares of the unit square.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
\frac{1^{2}}{2}+\frac{1}{2} & =c^{2} \\
\frac{1}{4}+\frac{1}{4} & =c^{2} \\
\frac{1}{2} & =c^{2} \\
\frac{1}{\sqrt{2}} & =c
\end{aligned}
$$

Let $f($ point $a)=$ the $Y(n \times Y / n$ subsquave trat contains a.
is f mell-detined? Check $1,2,3$. G choosse somehin sowehrizy
or boumdang?
Note $\left.\begin{array}{l}|A|=n^{2}+1 \\ |B|=n^{2}\end{array}\right\} \Rightarrow|A|>|B|$ e.g., below fleft.
By PHP, $\exists a_{11}, a_{2} \in A$ s.t. $a_{1} \neq a_{2}, f\left(a_{1}\right)=f\left(a_{2}\right)$, i.e., $\exists 2$ distruct points a_{1}, a_{2} s.t. a_{1}, a_{2} are witnin some $1 n x$ in suosquare.
wimin a $1 / n x 1 / n$ square, the fartrest 2 points canbe is $\frac{\sqrt{2}}{n}$:

$$
\begin{aligned}
& \sqrt{\left(\frac{1}{n}\right)^{2}+\left(\frac{1}{n}\right)^{2}} \\
= & \sqrt{\frac{2}{n^{2}}}=\frac{\sqrt{2}}{n} .
\end{aligned}
$$

So a_{1}, a_{2} are witnin $\frac{\sqrt{2}}{n}$ of eacen sfer.

