Claim (example 4.12) let n be any int. Then $n \cdot(n+1)^{2}$ is even.
terms: integers
even \rightarrow divisible by 2
$\rightarrow x / 2$ is an integer
$\rightarrow x=2 c$ for an integer c
example:

$$
\begin{array}{ccc}
n & n(n+1)^{2} & n(n+1)^{2} \text { even? } \\
0 & 0(1)=0 & T \\
3 & 3 \cdot(3+1)^{2}=48 & T \\
-2 & -2(-2+1)^{2}=-2 & T
\end{array}
$$

easy special cases:
n is even. So n times anything is even!
n is odd. So $n+1$ is even.
wait! that covers everything.

Proof consider 2 cases.
Case 1: n is even.

Statement
$n=2 c$ for int. c
$n(n+1)^{2}=2 c(n+1)^{2}$ $c(n+1)^{2}$ is an int.
$n(n+1)^{2}$ is even
reasoning
by def. of even
by substitution
sum, product of ints is int
we gave a way to white it as $2 k$ for integer $k\left(k=c(n+1)^{2}\right)$
case 2: n is odd.
statement
$n+1$ is even
$n+1=2 c$ for integer c

$$
\begin{aligned}
n(n+1)^{2} & =n(2 c)^{2} \\
& =2 n 2 c^{2}
\end{aligned}
$$

$n 2 c^{2}$ is integer $n(n+1)^{2}$ is even
reasoning
n is odd
def. of even
substitution, algebra
product of ints is int by def. of even

Since n is either even or odd, and in either case $n(n+1)^{2}$ is even, $n(n+1)^{2}$ even.

Proof by cases: if it is useful, split your claim in to cases.

- prove claim in each case
- ensure that cases are exhaustive (cover all possibilities in original claim)
claim (example 4.13) let x be a real number. Then - $|x| \leq x \leq|x|$.
temp: absolute value $|x|=\left\{\begin{array}{cl}-x & \text { if } x<0 \\ x & \text { if } x \geqslant 0\end{array}\right.$

examples: | x | $\|x\|$ | $-\|x\|$ | $-\|x\| \leq x \leq\|x\| ?$ |
| :---: | :---: | :---: | :---: |
| 2 | 2 | -2 | $-2 \leq 2 \leq 2$ |
| -2 | 2 | -2 | $-2 \leq-2 \leq 2$ |

Proof There are tho cases.
Case 1: $\quad x \geqslant 0$.
Statement
$-x \leq 0 \leq x$
$-|x|=-x \leq 0 \leq x=|x|$
reasoning
$-|x| \leq x \leq|x| \quad$ by algeria
case 2: $x<0$.

$$
x \leq 0 \leq-x \quad \text { because } x \leq 0
$$

$-|x|=x \leq 0 \leq-x=|x|$ because $|x|=-x$ wen $x<0$
$-|x| \leq x \leq|x| \quad$ by algebra
Since every real number is either
$\geqslant 0$ or $\angle 0$, the claim holds.

