A special compound proposition: $\neg q \Rightarrow \neg p$ The contrapositive of $p \Rightarrow q$.

p	q	$-p \Rightarrow q$	$\neg q$	$\neg p$	$\neg q \Rightarrow \neg p$	$q \Rightarrow p p$
T	T	T	F	F	T	T
T	F	F	T	F	F	T
F	T	T	F	T	T	F
F	F	T	T	T	T	T

special because $p \Rightarrow \neg \equiv \equiv \neg q \Rightarrow 7 p$
Note frat the converse of $p=7 q, q \Rightarrow p$, is not logically equivalent to $p \Rightarrow q$.

$$
p \Rightarrow q \not \approx q=7 p
$$

Recall proofs by contradiction:
Claim 4.18 (part of it)
If $\frac{n^{2} \text { is even, then } \frac{n \text { is even. }}{p} p \Rightarrow q \text { } q \text {, } p \text { inion? }}{q}$
why did we prove by contradiction? Let's fry a direct proof.
Let n^{2} be even. WTS n is even.
$n^{2}=2 c$ for $c \in \mathbb{Z}$ del. of even
??? $n=\sqrt{2 c}$
$n=\frac{2 c}{n}$
we don't have facts about things like this.
(1) For contradictor, suppose $\neg(p=7 q)$
(2) $ᄀ(p=7 q) \equiv p \wedge \neg q$
(3) direct proof that $\neg q \Rightarrow \neg p$
(5) established $7 p \wedge p \equiv F$ (a contradiction)
(6) $\neg(p=\neg q) \equiv F$, so $p \Rightarrow \neg q \equiv T$.

Proof For contradiction, suppose the claim is false. That is, suppose that $\frac{n^{2} \text { is even }}{\text { but } n \text { is odd. }}$ but n is odd.

$$
\begin{align*}
& n=2 k+1 \text { for } k \in \mathbb{Z}) \neg q \\
& n^{2}=(2 k+1)^{2} \\
& n^{2}=4 k^{2}+4 k+1 \\
& n^{2}=2\left(2 k^{2}+2 k\right)+1 \tag{2}\\
& n^{2}=2 c+1 \text { for }<\in \mathbb{Z}
\end{align*}
$$

$$
n o d d \Rightarrow n^{2} \circ d d
$$

$$
\neg q \Rightarrow \neg p
$$ and $\neg p$ (by (3))

(4) ${ }^{n}$

This contradicts that n^{2} is even, So our initial assumption that n is odd is false.
so the initial claim is true.

Note: (3) was a direct proof that $\neg q \Rightarrow \neg \neg p$.
That is, a direct proof of the contrapositive.
So we can give a shorter proof by
proving the contrapositive? proving the contrapositive?

Claim If n^{2} is even, then n is even.
Proof we will prove the contrapositive: If n is odd, then n^{2} is odd.
$n=2 k+1$ for $k \in \mathbb{Z}$ det. of odd

$$
\begin{aligned}
& n^{2}=(2 k+1)^{2} \\
& n^{2}=4 k^{2}+4 k+1 \\
& n^{2}=2\left(2 k^{2}+2 k\right)+1 \\
& n=2 c+1 \quad \text { for } \quad c \in \mathbb{Z}
\end{aligned}
$$

$$
c=2 k^{2}+2 k ;
$$

prod, sum of int is int
n^{2} is odd

Note you can only use contra positive proofs on if-tren claims $(p \Rightarrow q)$
sometimes a direct plot is easier / simpler. sometimes not.
Proposition Suppose $x \in \mathbb{Z}$. If $7 x+9$ is even, then x is odd.

Proof (direct) Suppose $7 x+9$ is even. WTS x is odd.
$7 x+9=2 c$ for $c \in \mathbb{Z}$
$x=2 c-6 x-9$
del. of even algebra

$$
\begin{array}{ll}
x=\text { even-even-odd } & \text { prod. Ge evens } \\
x=\text { weven-ony int is even } \\
x \text { is odd } & \text { even-even is even } \\
& \text { diff of even and odd } \\
& \text { is odd }
\end{array}
$$

Proof (by contrapositive)
we prove the contra positive. That is, if x is even then $7 x+9$ is odd. suppose x is wen. WTS $7 x+9$ is odd.
$7 x$ is even
$7 x+9$ is odd (4.17)

Claim Suppose $y \neq 0$. If x / y is irrational, $\frac{\text { then } x \text { is irrational or } y \text { is irrational. } p \Rightarrow(q \vee r)}{(q \vee r)}$
contrapositive is $\neg(q \vee r) \Rightarrow \neg p \equiv(\neg q \wedge \neg r) \Rightarrow \neg p$
Proof we prove the contrapositive. That is, If x and y rational, then x ry rational.
You did this or HW $1 \ddot{\sim}$
claim (4.16) If $|x|+|y| \neq|x+y|$ then $x y<0$.
ex

x	y	$\|x\|+\|y\|$	$\|x+y\|$	$x y$	
-2	3	5	1	-6	TV
2	3	5	5	6	FF

Pf we prove the contrapositive. That is, if $x y \geqslant 0$ then $|x|+|y|=|x+y|$. suppose $x y \geqslant 0$. wIS $(x|+|y|=| x+y)$.
we prove using cases.

$$
\begin{array}{cc}
\text { Case 1: } x, y \geqslant 0 & \\
|x|+|y|=x+y & \text { by et of } 11, x \geqslant 0, \\
x+y=|x+y| & \text { bc } x, y \geqslant 0 \Rightarrow x+y \geqslant 0, \\
\text { case 2: } x, y \leqslant 0 . & \text { Set of } 11 \\
|x|+|y|=-x+-y & \text { deft. of } 11, x, y \leqslant 0 \\
-x-y=-(x+y) & \text { algebra } \\
-(x+y)=|x+y| & \text { bc } x, y \leqslant 0 \Rightarrow x+y \leqslant 0, \\
& \text { get of } 11
\end{array}
$$

Claim All prime numbers are odd.
三 If p is prime, men p is odd.
Disproof by counter example: 2 is prime but 2 is not odd.
claim. Let $p \geqslant 3$. If p is prime, then p is odd.

Pf we prove the contrapositive. That is, we ext $p \geqslant 3$, and we show that if p is even, then p is not prime.
let $p \geqslant 3$ and p even.
phase 2 as a divisor given
p is not prime
$p \neq 2$, so p has a divisor not equal to itself or 1 .

