(4.19)

Claim suppose $15 x+111 y=55057$ for $x, y \in \mathbb{R}$. Then at least one of x, y is not an integer.

$$
\begin{array}{ccccc}
x & y & & \text { int } & y \text { int } \\
\text { ex } & \begin{array}{c}
\text { 21 of not } \\
\text { int }
\end{array} \\
0 & y=\frac{55057}{111} & T & F & T \\
1 & y=\frac{55042}{111} & T & F & T \\
\frac{55057}{15} & 0 & F & T & T
\end{array}
$$

False start at a proof:

$$
\begin{array}{ll}
y=\frac{55057-15 x}{111} & \text { algebra } \\
y=\frac{55057}{111}-\frac{15 x}{111} & \text { but now what? }
\end{array}
$$

Proof (by contradiction)
Aiming for a contradiction, suppose the claim is false. That is, suppose it is not the case that at least one of x, y is not integer. That is, suppose bot x and y are integer.

$$
\begin{aligned}
& 55057=15 x+111 y \quad \text { by claim } \quad \\
& x, y \in \mathbb{Z} \\
& \text { assumption }
\end{aligned}
$$

$$
\begin{aligned}
& 55057=3(5 x+37 y) \\
& \frac{55057}{3}=5 x+37 y \\
& 18352 \frac{1}{3}=5 x+37 y \\
& 18352 \frac{1}{3} \in \mathbb{Z}
\end{aligned}
$$

factoring
algebra
algebra
because product, sum of ints is int
But t is is a contradiction because $18352 \frac{1}{3}$ is not an integer. Therefore, our initial assumption mat bor $x, y \in \mathbb{Z}$ is false, so at least one
is non integer. is non integer.
(4.18 -part)
Claim if n^{2} is even, tron n is even.

n	n^{2}	n	n^{2} evens?
	16	T	
4	4	T	T
-2	4	T	F
3	9	F	F

Proof For contradiction, suppose the claim is false. That is, suppose that n^{2} is even but n is odd.

$$
\begin{array}{ll}
n=2 k+1 \text { for } k \in \mathbb{Z} & \text { by deft of odd } \\
n^{2}=(2 k+1)^{2} & \text { substitution } \\
n^{2}=4 k^{2}+4 k+1 & \text { algebra } \\
n^{2}=2\left(2 k^{2}+2 k\right)+1 & \text { factoring }
\end{array}
$$

$$
\begin{aligned}
& n^{2}=2 c+1 \\
& c \in \mathbb{Z} \\
& n^{2} \text { is odd }
\end{aligned}
$$

because prod., sum of int is int
deft. of odd

This contradicts the fact phat n^{2} is even, so the assumption that n is odd is false.
(4.20)
claim $\sqrt{2}$ is not rational.
Proof For the sake of contradiction, assume that $\sqrt{2}$ is rational.

$$
\sqrt{2}=\frac{n}{d}, n, d \in \mathbb{Z}, d \neq 0,
$$

n, d in covert terms' (can't' have a common divisor)

$$
\begin{aligned}
& z=\frac{n^{2}}{d^{2}} \\
& 2 d^{2}=n^{2} \\
& n^{2} \text { is even } \\
& n \text { is even } \\
& n=2 c, c \in \mathbb{Z} \\
& n^{2}=4 c^{2} \\
& n^{2}=4 c^{2}=2 d^{2} \\
& 2 c^{2}=d^{2}
\end{aligned}
$$

del of rational
squaring both sides algebra
def. of even claim 4.18
del of even algebra
substitution algebra
d^{2} is even
d is even

Let. of even daim 4.18

So d and n are both divisible by 2 . But this contradicts the fact that n and d have no common divisor. So our initial assumption that $\sqrt{2}$ is rational is false.

