Review of predicate logic:

- for all, aka the universal quantifier:

$$
\forall x \in S: P(x)
$$

T iff $P(x)$ is T for even g $x \in S$

- there exists, aka true existential quantifier:

$$
\exists x \in S: P(x)
$$

Tiff $P(x)$ is T for some $(\geq 1) x \in S$.
Ret A fully quantified expression in predicate $\operatorname{logic~is~a~meonem~iff~it~is~twe~for~}$ (akin possible meaning of its predicates. (akin to a tautology), aaa, $\forall S$
Them (3.39) let S be any set. $\forall x \in S:[P(x) \vee \neg P(x)]$.
ex $P(x)=$ is Even $(x), S=\mathbb{Z}$. note the $\operatorname{imp}_{\forall p}$

$$
\forall x \in \mathbb{Z}:[\operatorname{is} E \operatorname{ven}(x) v\urcorner \operatorname{isEven}(x)]
$$

If For any $x \in S, P(x)$ is defined, and $P(x)=T$ or deft. of $P(x)=F$ predicate

For any $x \in S, P(x) \vee \neg P(x)$ Let. of $v, 7$
$\forall x \in S:[P(x) \vee \neg P(x)]$
Let. of V

Non-tum $(3.40)[\forall x \in S: P(x)] v[\forall x \in S: \neg P(x)]$ note implied $\forall S$, $\forall P$
ex $[\forall x \in \mathbb{Z}:$ is Even $(x)] v[\forall x \in \mathbb{Z}$: 1 is Even $(x)]$
\& allints are even or call ints are odd dispro of: $x=3$
disproof: $x=2$
$\exists x \in \mathbb{Z}$: 7 is Even (x) $\quad \exists x \in \mathbb{Z}$: is Even (x)
Disproof of 3.40: we gave a $P(x)$ and an S (is Even and \mathbb{Z}) S.t. 3.40 is nut true.
Bet Fully quantified expressions φ and ψ ave φ logically equivalent $(\varphi \equiv \psi)$ iff " $\varphi \Leftrightarrow$ q" is a meorem - hat is, they
have the same meaning under every
interpretation of predicates. interpretation of predicates.

Thu (3.41) ᄀ[$\forall x \in S: P(x)] \Leftrightarrow[\exists x \in S: \neg P(x)]$ ex to disprove $\forall x \in \mathbb{Z}$: is Even (x), ;ust fond $x \in \mathbb{Z}$: ᄀ is Even (x). e.g., $x=3$.
this theorem explains un disproof by counter example works?
intuition behind proof:
let $S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$. Then:

$$
\begin{aligned}
& \neg[\forall x \in S: P(x)] \\
\cong & \neg\left[P\left(x_{1}\right) \wedge P\left(x_{2}\right) \wedge P\left(x_{3}\right) \wedge \ldots\right]
\end{aligned}
$$

infinite \# of props del. of
$\equiv \neg P\left(x_{1}\right) \vee \neg P\left(x_{2}\right) \vee \neg P\left(x_{3}\right) \cdots$ de Morgan's Law $\cong \exists x \in S: \neg p(x)$
deft of \exists
$\operatorname{Thm}(3.42) \neg[\exists x \in S: Q(x)] \Leftrightarrow[\forall x \in S: \neg Q(x)]$
If let $P(x)=\neg Q(x)$.
$\neg[\forall x \in S: P(x)] \Leftrightarrow[\exists x \in S: \neg P(x)]$ Them 3.4)
$\forall x \in S: P(x) \Leftrightarrow \neg[\exists x \in S: \neg P(x)] \begin{aligned} & \text { neg aton } \\ & \text { both sides }\end{aligned}$
$\forall x \in S: \neg Q(x) \Leftrightarrow \neg[\exists x \in S: Q(x)]$ subs.
ex $\neg\left(\exists x \in \mathbb{R}: x^{2}+1=0\right) \equiv \forall x \in \mathbb{R}: x^{2}+1 \neq 0$
Thu (3.43) For $s \neq \phi$,

$$
[\forall x \in S: P(x)] \Rightarrow[\exists x \in S: P(x)]
$$

"if it's true for all, it's true for one".
"if everybody's doing it, then somebody's doing it"
ex $\forall x \in \mathbb{Z}:$ is Even $(2 x) \Rightarrow \exists x \in \mathbb{Z}$:isEven $(2 x)$
Pf Suppose $\forall x \in S: P(x)$. wTS $\exists x \in S: P(x)$.
$\exists a \in S$ $P(a)$ true

$$
\exists x \in S: p(x)
$$

since $s \neq \phi$ $a \in S$ and given that $\forall x \in S: P(x)$ it's a!

Q murat is the converge of 3.43 ? For $S \neq \varnothing,[\exists x \in S: P(x)] \Rightarrow[\forall x \in S: P(x)]$. is it true? What does a disproof look like?
The $\forall x \in \varnothing: P(x) \quad$ " $P(x)$ is vacuously the"
Pf Aiming for a contradiction, suppose the claim is false.

$$
\begin{aligned}
& \neg[\forall x \in \varnothing: P(x)]
\end{aligned} \quad \text { assumption }
$$

Which is a contradiction, since there are no elements in \varnothing.
ex all even primes $\geqslant 30$ are divisible by 10.

- This is true, bc there are no even primes $\geqslant 30$.
- This is vacuously true.

Q: unat is the negation (+ simplified) of:
The square of even real $\#$ is non-regative.

$$
n\left[\forall x \in \mathbb{R}: x^{2} \geqslant 0\right] \equiv \exists x \in \mathbb{R}: x^{2}<0
$$

Q: Negate + simplify:
if a is odd tree a^{2} is odd.

$$
\begin{gathered}
\neg\left(\forall a \in \mathbb{Z}: a \text { odd } \Rightarrow a^{2} \text { odd }\right) \\
\equiv \exists a \in \mathbb{Z}: \neg\left(a \text { odd } \Rightarrow a^{2} \text { odd) }\right) \\
\equiv \exists a \in \mathbb{Z}:\left(a \text { odd and } a^{2} \text { not odd }\right) \\
\mapsto \neg(p=7 q) \\
\equiv \neg(\neg p \vee q) \\
\equiv p \wedge \neg q
\end{gathered}
$$

