To pick up on monday, $2 / 6$
last time we ended w/ a def. of tautology. We'll pick up mene and tree fill in some move of anat 7 skipped on Friday.
(go back to those note)) tautology ex: $(p \Rightarrow q) \wedge p$

p	q	$p=7 q$	$p \Rightarrow q \wedge p$
T	T	T	T
T	F	F	T
F	T	T	T

Q suppose we have propositions p, q, r. How many rows doles the turn table have?
8. 2^{n}. One for each of $\{T, F\}^{n}$.

$$
\underbrace{\{T, F\} \times\{T, F\} \times \cdots \times\{T, F\}}_{n \text { times }}
$$

So for $n=3$,

$$
\{T, F\} \times\{T, F\} \times\{T, F\}=\{\langle T, T, T\rangle,\langle T, T, F\rangle, \cdots\}
$$

Def (again) 2 propositions p, q ave logically equivalent, written $p \equiv q$, iff hair truth tables ave the same.

p	q	$\neg p$	$\neg q$	$p \vee q$	$\neg(p \vee q)$	$\neg p \wedge \neg q$
T	T	F	F	T	F	F
T	F	F	T	T	F	F
F	T	T	F	T	F	F
F	F	T	T	F	T	T

$$
\neg(p \vee q) \equiv \neg p \wedge \neg q
$$

recall De Morgan's Law: $\overline{(A \cup B}=(\bar{A} \cap \bar{B})$
Precedence Rules
parentreses
2. $v_{1} \wedge_{1} \oplus$
3. $=7$
4. \Leftrightarrow
break ties left to night
A drill question: how many rows does the truth table for $a \Rightarrow(b \vee(c \wedge \neg a))$ have? 3 variables, so $2^{3}=8$.
let's see murat that looks like:

a	b	c	$\neg a$	$c \wedge \neg a$	$b v(c \wedge \neg a)$	$a \Rightarrow(b v(c \wedge z a)$
T	T	T				
T	T	F				
T	F	T				
T	F	F				
F	T	T				
F	T	F				
F	F	T				
F	F	F				

