Examples of pRopositions:
for ints n for ints n for neal's x, y
$n(n+1)^{2}$ is even if n^{2} even, then n even if $x \in \mathbb{Q}$ and $y \in \mathbb{Q}$ then $x y \in \mathbb{Q}$
$\sqrt{2}$ is not rational
In proofs, we 've done things like:
n even $\Rightarrow n=2 c$ for $\in \mathbb{Z}$
("implies that")

$$
n x, n y \in \mathbb{Z} \Rightarrow n_{x} n_{y} \in \mathbb{Z}
$$

$\sqrt{2}$ rational $\Rightarrow \cdots \Rightarrow \cdots \Rightarrow$ false (contradiction)
n int $\Rightarrow n$ is even or odd
we can consturct compound propositions out of smaller (atomic) propositions.
¿cau't be broken down any smaller
Sytax vs. Semantics
\rightarrow grammatically \rightarrow meaning of a dramatically correct correct sentence or (for given language) statement
let p, q be propositions.

formal semantics

p	q	$p \wedge q$	$p \vee q$	$\neg p$	$p \Rightarrow q$	$p \ll>$	$p \oplus q$
T	T	T	T	F	T	T	F
T	F	F	T	F	F	F	T
F	T	F	T	T	T	F	T
F	F	F	F	T	T	T	F

$2 \times$ is even and 3 is odd T
2 is even and 4 is odd F
1 is even and 3 is odd F
3 is even and 2 is odd F
2 is even or 3 is odd T
2 is even or
1 is even or 4 is odd T
3 is even or 3 is odd T
2 is odd F
not $(2$ is even) F
not $(2$ isodd) T
if/tren
true iff p "forces" q
it's a prom ise mat whenever $p T$, q also T so $p \Rightarrow q$ is F unen that promise is broken. That is, unen p is T and q is F.
ex if it rains then the grass is wet. wren is this a lie? rains grasswet

T	T	\checkmark
T	F	x
F	F	\checkmark

if p tron q can also be written as:
q whenever p
F is necessany for p
b only if a
p is a sufficient condition for p
unevever p also q
p implies q
Q suppose we have propositions p, q, r.
how many rows does the truth table have?
2^{n}. one for earn of $\{T, F\}^{n}$. (recall set notation)

$$
\begin{aligned}
& \{T, F\} \times\{T, F\}=\{\langle T, T \geqslant,\langle T, F\rangle,\langle F, T\rangle,\langle F, F\rangle\} \\
& \{T, F\}^{\}}=\{\langle T, T, T\rangle,\langle T, T, F\rangle, \ldots\}
\end{aligned}
$$

Det 2 propositions are logically equivalent, whiten ミ, iff their tuith tables are the same.

p	q	$p \Rightarrow q$	$q \Rightarrow p$	$\neg p \vee q$	$\neg q \Rightarrow-p$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

$$
\begin{aligned}
& (p \Rightarrow \neg q) \equiv(\neg p \vee q) \\
& (p \Rightarrow \neg q) \\
& (p \Rightarrow \neg q) \neq(\neg q \Rightarrow \neg p) \\
& \neg(p \vee q) \equiv(\neg p) \wedge(\neg q) \\
& (\overline{A \cup B})=(\bar{A} \cap \bar{B})
\end{aligned}
$$

De Morgan's Law

Precedence rules

1. 7
2. $v_{1} \wedge_{1} \oplus$
3. $=7$
4. $<>$

Deft Prop p is satisfiable iff it is the under at least one tret assignment.
that is, at least one vow of the turn table evaluates to T.
ex

$$
p_{p} \stackrel{\rightharpoonup q}{ }
$$

Deft A prop is a tautology if every row of the truman table is the.

$$
\text { ex }(p \Rightarrow q) \wedge p
$$

