Relations
CS application: relational databases. tables hold relations

student id	first name	last name
123	Bob	smith
\vdots	\vdots	\vdots

student id 123

$$
123
$$

passed course
$\csc 246$
CSCl 112

Questions about data stored in tables can be posed precisely using the language

SQL (structured query language) implements fris.
Def A binary relation R on sets A, B is a subset $R \subseteq A \times B$.
Recall: $A \times B=\{\langle a, b\rangle: a \in A, b \in B\}$
we wite $\begin{aligned} & (x, y) \in R \text { as } x R y \\ & (x, y) \notin R \text { as } x R y\end{aligned}$

$$
(x, y) \notin R \text { as } x \notin y
$$

examples:
(1) "is related to" is a binary recapon on people!
let P be the Let of all people. "is related to" is $\{(x, y\rangle: x, y \in P$, x is related to $y\}$
So 〈serena williams, venus williams>
ϵ "is related to"
But <Lucy williams, Sevenawilliams>
\notin "is related to"
(2) $<$ on $A=\{1,2,3,4\}$ is

So $1<2$ but $3 \nless 2$, because $\langle 1,2\rangle \in$ but $\langle 3,2\rangle$ is not.
(3) Let $f: A \rightarrow B$ be a function.

$$
\left\{\begin{array}{l}
\{a, f(a)\rangle: a \in A\} \leq A \times B \text {, so it is } \\
\text { a relation! }
\end{array}\right.
$$ a relation!

So any function defines a relation.

$$
\begin{aligned}
f: A \rightarrow B \text { is a function } \Rightarrow & \{<a, f(a)\}: a \in \mathbb{A}\} \text { is } \\
& \text { a relation }
\end{aligned}
$$

Q is me converse true?

$$
\begin{aligned}
\{\langle x, y\rangle: x \in A, y \in B\} \text { is } \Rightarrow & f: A \rightarrow B \text { s.t. } \\
\text { a relation } & f(x)=y \text { is a } \\
& \text { function }
\end{aligned}
$$

(4) Let $A=$ months,B hum. days $\{\langle J a n, 31\rangle,\langle F e b, 28\rangle$, 〈Feb, 29〉, (Mar, 31),

$$
\because 3
$$

is the relation indicating the number of
days in a month. days in a month.
Note: we can also represent relations visually:

(5)

$$
\begin{aligned}
A= & \{1,2,3,4\} \\
R= & \left\{\begin{array}{l}
\langle 1,1\rangle,\langle 1,3\rangle,\langle 3,1\rangle,\langle 3,3\rangle,\langle 2,4\rangle\rangle \\
\\
\\
\langle 2,2\rangle,\langle 4,2\rangle,\langle 4,4\rangle\}
\end{array}\right.
\end{aligned}
$$

$a R_{b}$ is "has same panty as"
(6) $R \cap<=\{\langle 1,3\rangle,\langle 2,4\rangle\} \leq A \times A$ so is a relation!
a has same panty as b and a is less $\operatorname{tnan} b$.

Properties of relations
let $R \subseteq A \times A$ (so R is a relation on A) let's represent R as a graph:

$$
a_{1} \rightarrow a_{2} \supseteq \quad R=\left\{\left\langle a_{1}, a_{2}\right\rangle,\left\langle a_{2}, a_{2}\right),\left(a_{1}, a_{3}\right\rangle\right\}
$$

$>a_{3}$ edge a_{1} to a_{2} means $\left\langle a_{1}, a_{2}\right\rangle$
R is reflexive if $\forall a \in A: \quad a R a$ all nodes have self-loops

R is ir reflexive if $\forall a \in A: ~ a \mathbb{X} a$ no node has
a self-loop $\quad a_{1} \rightarrow a_{2}$
Q are all relations on A either reflexive or irref lexive?
R is symmetric if

$$
\begin{aligned}
& \forall a_{1}, a_{2} \in A: a_{1} R a_{2} \Rightarrow a_{2} R a_{1} \\
& a_{1} \rightarrow a_{2} \rightarrow a_{3} \rightarrow\left(a_{4}\right.
\end{aligned}
$$

unenever we have a forward edge, we also have a backward edge.
R is anti-symmeric if

$$
\forall a_{1}, a_{2} \in A:(a R b \wedge b R a) \Rightarrow(a=b)
$$

$$
C^{b} a_{1} \rightarrow a_{2}
$$

never have backwards edge (but self-loops ok)
R is transitive if

$$
\begin{aligned}
& \forall a, b, c \in A:(a R b \wedge b R c)=>a R c \\
& a \rightarrow b \rightarrow c \quad a \rightarrow b \rightarrow c
\end{aligned}
$$

shorturt edges must always exist
Q is $a_{1} a_{2}$ transitive?
ex
$a R b$

$$
\xrightarrow[1 \rightarrow 2 \longrightarrow 4]{\longrightarrow 3}
$$

relation $<$ on $\mathbb{Z} .1<2$ or $\langle 1,2\rangle \in \mathbb{R}$

- reflexive: $\forall a \in \mathbb{Z}:$ a $R a$ $a<a$? no. $Q^{2} \mid \nmid 1$.
no. proof by counter example:
G
- irreflexive: $\forall a \in \mathbb{Z}$: a\&fa. yes!
proof: let $a \in \mathbb{Z}$. $a \notin a$. 0
- symmetric: $\forall a, b \in \mathbb{Z}: a<b=7 b<a$.
no. proof by counter example: $1<2$ but $2 \not \& 1$.
- anfi-symmetric: $\forall a, b \in \mathbb{Z}: a R b \wedge b R a \Rightarrow a=b$ yes! proof: let $a, b \in \mathbb{Z}$.

