Def A set is a collection of distinct, Unordered items called elements.
ex $D=\{0,1,2,3, \ldots, 9\}$ has 10 elements
bits $=\{0,1\}$ has 2 elements
Boot $=\{$ True, False\} has 2 elements
$\mathbb{Z}=$ integers has ∞ elements

$$
\xi \ldots,-2,-1,0,1,2, \ldots 3
$$

$\mathbb{Q}=$ rationals
$\mathbb{R}=$ reals
$V=\{a, e, i, 0, u, y\}$ has 6 ells.

$$
\Sigma=\{a, b, c, \ldots, x, y, z\} \text { has } 26 \text { elts. }
$$

Def Two set A, B ave equal (denoted $A=B$) iff A and B contain exactly the same ells.
ex. $\{0,1\}=\{1,0\}=\{0,0,1\}$ (but we usually don't unite down repeats)
Def we write $x \in S$ ($x \notin S$) iff x is in (not in) S.
ex. $0 \in$ bits $2 \notin$ bits $\pi \notin \mathbb{Z}$
$\frac{\text { Def }}{(d e n o t e d ~ c a r d i n a l i t y ~ o r ~ s i z e ~ o f ~ a ~ s e f ~} S$ (denoted by ISI) is the number of distinct elements in 5 .
ex. \mid bits $|=2 \quad| \Sigma \mid=26$
note: we don't consider infinity to be a number, so we don't write $|\mathbb{Z}|=$ any fning. We just
say" \mathbb{Z} has infinite cardinality" or similar. say " \mathbb{Z} has infinite cardinality" or simitar.

Q (an we have a set S such that (5 t.) $|S|=0$?

Def The empty set, denoted $\{3$ or \varnothing, is the set with no elements.

$$
|\phi|=0
$$

Note $\{\phi\} \neq \phi \rightarrow$ empty box
\rightarrow box containing an empty box

$$
|\{\varnothing\}|=1
$$

$F=\{\varnothing,\{\varnothing\},\{\{\varnothing 3\}\}$ has 3 elements.
F is a box with 3 elements:

1. an empty box
2. a box containing an empty box
3. a box containing a box containing an empty box
Q If $A=B$ dies $(A|=|B|$? Yes, by substitution
Q is the converse the? If $|A|=|B|$, does $A=B$?
Disproof by counter example:
Consider $A=\{5\}, B=\{C\}$.
$|A|=1$ and $|B|=1$. B ut $A \neq B$.

Def Set builder notation defines a set

$$
\begin{aligned}
& S=\{x: \text { a rule about } x\} \\
& \text { " } x \text {, } \\
& \text { "such that" }
\end{aligned}
$$

S contains the elements x st. the puce about x is true.
ex. evens $=\{x: x \in \mathbb{Z}$ and x even $\}$
evens $=\{x: x=2 c$ for $c \in \mathbb{Z}\}$

$$
\begin{aligned}
\text { evens } & =\{x \in \mathbb{Z}: x \text { even } \\
\text { bits } & =\{x \in \mathbb{Z}: 0 \leq x \leq 1\}
\end{aligned}
$$

Def A is a subset of B (denoted $A \subseteq B$) we cf every element of A is also in B. we can a iso say that B is a superset of A (denote $Q B \geq A$).
ex. \quad evens $\subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$

$$
\begin{aligned}
& \text { but } \mathbb{R} \not \subset \mathbb{Q} \nsubseteq \mathbb{Z} \nsubseteq \text { evens } \\
& \begin{array}{lll}
\pi \in \mathbb{R} \text { but } \quad 1 / 2 \in \mathbb{Q} & \text { but } \\
\pi \notin \mathbb{Q} \text { but } 1 / 2 \notin \mathbb{Z} & \text { evens }
\end{array} \\
& \text { bits } \leq\{x: x \in \mathbb{Z} \text { and } 0 \leq x \leq 9\} \\
& \{0,5\} \subseteq\{0,1\}
\end{aligned}
$$

Note $\phi \leq S$ for any set S
$S \leq S$ for any set S

Q If $A \subseteq B$ what can we say about $|A|,|B|$?
$|A| \leq|B|$, because every elf. of A also in B
Q Is the converse true?
claim if $|A| \leq|B|$, tree $A \subseteq B$.
Disproof by counter example: Let $A=\{B$ and $B=\{23$. $|A|=1$ and $|B|=1$, so $|A| \leq|B|$. But $I \in A$ and $\mid \in B$, so $A \nsubseteq B$. divides,
claim $\{x \in \mathbb{Z}: 18 \mid x\} \leq\{x \in \mathbb{Z}: 6 \mid x\}$
Step 1: understand notation, terms. Sometimes it's usefl translate between math notation and English or vice versa.

- The set of numbers divisible by 18 is a subset of the numbers divisible by 6 .
- Every number divisible by 18 is also div.
by 6 . by 6.
Step 2 : do some exanuples.

ex.	\times	$18 \mid x ?$
18	T	$6 / X ?$
6	F	T
0	F	T
1	F	F

Pf wiS $\{x \in \mathbb{Z}: 18 / x\} \leq\{x \in \mathbb{Z}: 6 / x\}$ UTS $a \in\{x \in \mathbb{Z}: 181 \times\}$ then $a \in\{x \in \mathbb{Z}: 6 \mid x\}$ by def. of \subseteq
Suppose that $a \in\{x \in \mathbb{Z}: 181 \times 3$.

Statement
$a=18 c$ for $c \in \mathbb{Z}$
$a=6.3 \mathrm{c}$
$a=6 \cdot k$ for some
baa
$a \in\{x \in \mathbb{Z}: 61 x\}$
reasoning
by deft. of div. by 18
by factoring
because product of int is int (3 c)
by def. of div. by 6 rewriting

Def $A \cup B$ " A union B " is $\{x: x \in A$ or $x \in B\}$

note that elements $X \in A$ and $X \in B$ are in $A \cup B$.

$$
\text { ex. }\{2,4,6\} \cup\{2,3,4\}=\{2,3,4,6\}
$$

$$
\text { even incs } \cup_{00} \text { odd inns }=\mathbb{Z}
$$

$$
\mathbb{R}^{\geq 0} \cup \mathbb{R}^{\leq 0}=\mathbb{R}
$$

reals anteater
or eq 0 reals $1 .+$.
$A \cup \varnothing=A$ for any set A
$A \cup A=A$ for any set A

Ret $A \cap B$ " A intersect B " $\{x: x \in A$ and $x \in B\}$

ex. $\{2,4,6\} \cap\{2,3,4\}=\{2,4\}$ not disjoint
evens \cap odds $=\varnothing$ disjoint
$A \cap \varnothing=\phi$ for all sets A disjoint
$A \cap A=A$ for all sets A not disjoint
$\mathbb{R}^{20} \cap \mathbb{R}^{\leq 0}=\{03$ not disjoint
Deft Sets A, B are disjoint if $A \cap B=\varnothing$.
That is, they have no elements in common. ie.

$$
\bigodot_{A} O_{B} \text { disjoint } Q_{A} \text { not disjoint }
$$

Ret $A-B$ or $A \backslash B$ " A minus B " $\{x \in A: x \in A$ and $x \notin B 3$

$$
\text { ex. } \begin{aligned}
\{2,4,6\}-\{2,3,4\}=\{6\} \\
\{2,3,4\}-\{2,4,6\}=\{3\} \\
\text { evens odds }=\text { ovens } \\
A-B \subseteq A \text { or all sets } A, B \\
A-\varnothing=A \text { for all sets } A
\end{aligned}
$$

Deft \bar{A} or ~ A "A complement" $\{x: x \in A\}$

ex. $\overline{\{2,4,6\}}=\{0,1,3,5,7,8,9\}$ if u is $\{x \in \mathbb{Z}: 0 \leq x \leq 9\}$
if $u=\mathfrak{z}$

$$
\begin{aligned}
& A \\
& \{x \in \mathbb{Z}: x \mid 2\} \cap\{x \in \mathbb{Z}: x \mid 9\} \\
& \quad \subseteq\{x \in \mathbb{Z}: 6 \mid x\}
\end{aligned}
$$

Step 1: if x div. by 2 and x div. by 9 , then x div. by 6 .
Step 2: examples

x	$x \in A \cap B ?$	$x \in C ?$
6	F	T
0	F	T
3	F	T

what would be a counter example?

Pf Suppose $x \in A \cap B$. WTS $x \in C$.
statement
$x \in A$ and $x \in B$
$21 x$ and $91 x$
$x=2 c$ and $x=9 d$
for $c, d \in \mathbb{Z}$
$2 c=9 d$
$219 d$
d is even
$d=2 d^{\prime}$ for $d \in \mathbb{Z}$

$$
\begin{aligned}
& x=9\left(2 d^{\prime}\right) \\
& x=3 \cdot 3 \cdot 2 \cdot d^{\prime} \\
& x=6 \cdot 3 \cdot d^{\prime} \\
& 6 \mid x \\
& x \in C
\end{aligned}
$$

reasoning by dee. of \cap by def. of A, B
by deft. of divisibility
by substitution by def. of | (we wrote $9 d$ as $2 c$)
$219 d$, but 9 is odd, so d must be even by def of even by substitution by factoring by mull.
because $3 d^{\prime} \in \mathbb{Z}$ by del. of C
goal: $x=6 k \quad k \in \mathbb{Z}$

Thu (De Morgan's) $\overline{A \cap B}=(\bar{A} \cup \bar{B})$
The complement of the intersection is the union of the complements.

Pf we will prove that

$$
\left.\begin{array}{l}
\overline{A \cap B} \subseteq(\bar{A} \cup \bar{B}) \\
(\bar{A} \cup \bar{B}) \subseteq \overline{A \cap B}
\end{array} \text { and }\right\} \Rightarrow \begin{aligned}
& \overline{A \cap B}=(\bar{A} \cup \bar{B}) \\
& x^{k} \text { iff } x^{*}
\end{aligned}
$$

$\widetilde{A \cap B} \subseteq(\bar{A} \cup \bar{B})$: we will show that if $x \in \widetilde{A \cap B}$, men $x \in(\bar{A} \cup \bar{B})$.
Suppose $x \in A \bar{\cap} B$. WIS $x \in \bar{A} \cup \bar{B}$.
$x \notin A \cap B$
by deft. of -
x not in boon A and B by deft. of \notin and \cap $X \notin A$ or $x \notin B$ by reasoning formalized later $x \in \bar{A}$ or $x \in \bar{B}$ by et. of -
$x \in \bar{A} \cup \bar{B} \quad$ bydet. of V

Now suppose $x \in \bar{A} \cup \bar{B}$. WTS $x \in \overline{A \cap B}$. $X \in \bar{A}$ or $x \in \bar{B}$ by definition of U. So we will prove by cages.
case 1: $x \in \bar{A}$. WTS $x \in \overline{A \cap B}$.

$$
\begin{array}{ll}
x \notin A & \text { by def. of } A \\
x \notin A \cap B & \text { since } A \cap B \subseteq A \\
x \in \overline{A \cap B} & \text { by def. of }
\end{array}
$$

case 2: $x \in \bar{B}$. WTS $x \in \overline{A \cap B}$.
symmetric - replace $A \omega / B$ and vice versa.
Since the cases are exhaustive, the claim is proved.

Def Given a set S, the power set of S (denoted $P(s)$) is the set of all subsets of S.

$$
P(S)=\{A: A \subseteq S\}
$$

ex. $S=\{1,2,3\}$.

$$
\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

Another way to think about this: for even element of S, we either add it or don't.
add? add b ?

how many
leaves in this tree? $\searrow y —\{a, b, c\}$ 8
fact $|P(s)|=2^{|s|}$

$$
\begin{aligned}
& \text { ex. } B=\{1,2,\{1,3\}\} .|B 1=3 . \quad| P(B) \mid=8 . \\
& \{\varnothing,\{13,\{23,\{\{1,33\},\{1,2\},\{1,\{1,33\},\{2,\{1,33\}, \\
& \{1,2,\{1,3\}\}\}
\end{aligned}
$$

Note power set is also denoted 2^{5} for set S.
$\phi \in 2^{5}$ for all sets S
$S \in 2^{S}$ for all sets S
claim if $P(A) \subseteq P(B)$ wren $A \subseteq B$.

ex B from before $-B=\{1,2,\{1,3\}\}$.

$$
\begin{gathered}
A=\{13 . \quad \rho(A)=\{\varnothing,\{13\} . \\
P(A) \leq P(B) \quad A \subseteq B \\
T
\end{gathered}
$$

If (direct)
Suppose $P(A) \subseteq P(B)$. WTS $A \subseteq B$.
suppose if $C \in P(A)$ then $C \in P(B)$, then if $y \in A$ then $y \in B$.
So we wis if $y \in A$ men $y \in B$, and we have. if $c \in P(A)$ then $c \in P(B)$ to work w itu. Suppose $y \in A$.

$$
\begin{aligned}
& \{y\} \leq A \\
& \{y\} \leq P(A) \\
& \{y\} \leq P(B) \\
& y \in B \\
& A \subseteq B
\end{aligned}
$$

by get. of \subseteq
by def. of $P(A)$
by $P(A) \subseteq P(B)$
by det. of $P(B)$
by deft. of \subseteq

Def A sequence/list/tuple/array is an ordered collection of objects.
ex. $\langle 0,1\rangle$ q prese ave nest the same $\langle 1,0\rangle$

$$
\langle 0,0\rangle
$$

$A=\left\langle a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}\right\rangle$ array of n
Def let A, B be sets. The cartesian product $A \times B$ is the set of ordered pairs drawn for A and B in mat order.
so $A \times B=\{\langle a, b\rangle: a \in A$ and $b \in B\}$
ex. $\{a, b, c\} \times\{0,1\}=\{\langle a, 0\rangle,\langle b, 0\rangle,\langle c, 0\rangle$, $\{\langle a, 1\rangle,\langle b, 1\rangle,\langle c, 1\rangle\}$

$$
\mathbb{Z} \times \mathbb{Z}=\{(x, y): x \in \mathbb{Z}, y \in \mathbb{Z}\}
$$

all integer points in $2 D$ plane
$\mathbb{R} \times \mathbb{R}=\{\langle x, y\rangle: x \in \mathbb{R}, y \in \mathbb{R}\}$ all points in 2D plane

$$
\mathbb{Z} \times \mathbb{Z}
$$

$$
\mathbb{R} \times \mathbb{R}
$$

Q what is $|A \times B| ?|A| \times|B|$.

Def For set S, S^{n} is $S \times S \times \cdots \times S$ so $\left\{\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle\right.$: $\left.s_{i} \in S\right\}$
ex. $\left\{0,13^{\}}=\{000,001,010,011,100,101,110,111\}\right.$ all length three bits
$\mathbb{R}^{n}=n$-dimensional space
claim $A \times(B \cup C)=(A \times B) \cup(A \times C)$
Step 1: notation, terms...
phis looks like the distributive property from regular antnmetic: $a(b+c)=a b+b c$.
step 2: examples.

$$
\begin{aligned}
& A=\{1,2\} \quad B=\{b\} \quad C=\{D, 0\} \\
& A \times(B \cup C)=A \times\{b, 0,0\}=\{1 b, 10,10,2 b, 2 \square, 20\} \\
& A \times B=\{1 b, 2 b\} \\
& A \times C=\{10,10,2 D, 20\} \\
& (A \times B) \cup(A \times C)=\{1 b, 2 b, 10,10,20,20\}
\end{aligned}
$$

Pf we will prove \subseteq and \geq separately.
\leq : Prove that $A \times(B \cup C) \leq(A \times B) \cup(A \times C)$.
That is, if $y \in A \times(B \cup C)$, then $y \in(A \times B) \cup(A \times C)$.
suppose $y \in A \times(B \cup C)$.
$y \in\langle a, d\rangle$ where $a \in A$
by deft. of x and $d \in(B \cup C)$

There are tho cases: either $d \in B$ or $d \in C$. case 1: $d \in B$.

$$
\begin{aligned}
& y=\langle a, d\rangle \in A \times B \\
& y \in(A \times B) \cup(A \times C)
\end{aligned}
$$

by deft. of x
case 2: $d \in C$. symmetric.
\leq is done.
\geqslant : Prove prat $(A \times B) \cup(A \times C) \leq A \times(B \cup C)$. wIs if $y \in(A \times B) \cup(A \times C)$ men $y \in A \times(B \cup C)$.
Suppose $y \in(A \times B) \cup(A \times C)$.
case 1: $y \in A \times B$. exercise: Show $y \in A \times(B \cup C)$
case 2: $y \in A \times C$. show $y \in A \times(B \cup C)$
Some more set-nelated notation.

$$
\begin{array}{ll}
\min _{x \in S} x \text { minimum elf. inS } & \min _{x \in S} x=2 \\
\max _{x \in S} x \text { max elf. in } S & \max _{x \in S} x=4 \\
\sum_{x \in S} x \text { sum of eltsinS } & \sum_{x \in S} x=9
\end{array}
$$

$$
\prod_{x \in S} x \text { product of ells of s } \begin{aligned}
\prod_{x \in s} x & =2 \cdot 4 \cdot 3 \\
\pi x^{2} & =2^{2} \cdot 4^{2} \cdot 3^{2} \\
x \in S & =4 \cdot 16 \cdot 9
\end{aligned}
$$

If we have sets $A_{1}, A_{2}, \ldots, A_{n}$, men

$$
\begin{aligned}
& \bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \cdots \cup A_{n} \\
& \bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \cdots \cap A_{n}
\end{aligned}
$$

Deft A partition is a set of subsets of S s.t.

- every et of s is in some subset
- no el of S is in more fran one subset
ex. $\{2,3,4\}$

$$
\begin{aligned}
& \{\{2,3\},\{4\}\} \vee \\
& \{\{2,3\}\} x
\end{aligned}
$$

