(pronounced "cleek")
Deft A complete graph or clique is an undirected graph $G=(v, E)$ sit.

$$
\forall u, v \in v \quad u \neq v \Rightarrow\{u, v\} \in E .
$$

The clique on n nodes is denoted k_{n}.
ex k_{1}. o $k_{2} \ldots$. 1

ks

Q wat is the relationship between $n=|V|$ and $m=|E|$ for k_{n} ?
claim k_{n} has $\frac{n(n-1)}{2}$ edges. $\quad(n \geq 1)$
Proof \#1 we give a way to count the edges and show that it gives $\frac{n(n-1)}{2}$.

Label the nodes $v_{1}, v_{2}, \ldots, v_{n}$. Starting $w /$ v_{1}, count the uncounted cages and add to the total.
V_{1} has $n-1$ uncounted edges.
v_{2} has $n-2$ uncounted edges.
V_{n-1} has 1 uncounted edges
V_{n} has 0 vuwunted edges.
so $|E|=(n-1)+(n-2)+\cdots 1=\frac{(n-1) n}{2}$
because $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
proof \#2 In k_{n}, event node has degree $n-1$.

$$
\sum_{v \in V} \operatorname{deg}(v)=\sum_{v \in V}(n-1)=n(n-1)
$$

But by the handshaking lemma,

$$
\begin{aligned}
\sum_{v \in v} \operatorname{deg}(v) & =2|E| \\
n(n-1) & =2|E| \\
\frac{n(n-1)}{2} & =|E|
\end{aligned}
$$

Proof \#3 let $P(n)$ denote that $k n$ has $\frac{n(n-1)}{2}$
edges. We prove $\forall n \geqslant 1: P(n)$ edges. We prove $\forall n \geqslant 1: P(n)$ using mathematical induction on n.
Base cage: $n=1 \quad \cdot=\neq 1$ has 0 edges.

$$
\frac{1(1-1)}{2}=0 \text { so } P(1)^{1} \text { holds. }
$$

Inductive cage: we wTS $\forall n \geqslant 2: P(n-1) \Rightarrow P(n)$ Assume $P(n-1)$. That is, assume k_{n-1} has $\frac{(n-1)(n-2)}{2}$ edges.

Now, consider an arbitrary clique k_{n}. let k_{n} be the graph created by removing one node and all of its incident edges.
(example: k_{5}

k_{5}^{\prime} :

Note that $k_{n}^{\prime}=k_{n-1}$.

$$
\left.\begin{array}{rl}
\begin{array}{rl}
\text { \#edges of } \\
\text { kn }
\end{array} & =\begin{array}{c}
\text { wedges of } \\
k n-1
\end{array} \\
& +\begin{array}{r}
\text { \# edges we } \\
\text { nave to add } \\
\text { back to kn-1 } \\
\text { to get kn }
\end{array} \\
& =\frac{(n-1)(n-2)}{2}+n-1
\end{array}\right)
$$

DeA A bipartite graph $G=(L \cup R, E)$ sit.
$L \cap R=\varnothing$ (L, R disjoint) and

$$
E \subseteq\{\{l, r\}: l \in L, r \in R\}
$$

ex

$$
\begin{aligned}
& L=\{A, E\} \\
& R=\{B, C, D\} \\
& L=\{A, E\} \\
& R=\{B, C, D, F\} \\
& L=\{A, E, E\} \\
& R=\{B, C, D, F\}
\end{aligned}
$$

claim If G contains a $\triangle\left(k_{3}\right)$, then it is not bipartite.

Proof Aiming for a contradiction, suppose that G contains a \triangle and it is bipartite.
let v_{1}, v_{2}, v_{3} be the nodes of the Δ. example:

without loss of generality, suppose $v, \in L$. Then $v_{2} \in R$. Since $v_{2} \in R, v_{3} \in L$. But there is an edge from v_{1} to v_{3} and both are in R, which contradicts that G is bipartite.

Note: two graphs are eemal if trey have the same nodes oud edges.
Deft A graph is planar if we can draw it in the plane without me edges crossing.
ex

$$
\begin{gathered}
E-A-D-G-C \\
B / F
\end{gathered}
$$

