Tree Diagrams in Probability

- internal nodes = random choice
- label w/ probability

coin
sum of probe. $=1$
- Leaves are out comes
ex fie 2 coins $H, \mathrm{HH} / 4$
 prob of outcome is product of labels back to root
ex flip 1 fair coin. If H, flip 2 nd fair coin. If T, flip coin $\omega / 0.75$ prob of T.

$$
\begin{aligned}
& -\operatorname{Pr}[\langle T, T\rangle]=3 / 8 \\
& -\operatorname{Pr}[a+\text { least one } H]=1 / 4+1 / 4+1 / 8 \\
& \text { or } 1-\frac{3}{8}
\end{aligned}
$$

fipfst
coin

$$
T_{T T} \frac{3}{8}
$$

ex Monty hall problem

3 doors.
2 have goats,
1 has car
You pict I door.

Should you switch doors? A goat door

let $S=$ all out comes. car at A, you pick $A, \in S$
B revealed

Car at A, you pick $B, \in S$ C revealed

Let $A \leq S$ be all outcomes unere you win by switching.

What is $\operatorname{Pr}[A]$? $\quad 6 / 9=2 / 3$
What is $\operatorname{Pr}[\bar{A}]$? $\quad 3 / 9=1 / 3$

Det a permutation of a set S is a $|S|$ sequence of elements of s with no repetitions.
ex $S=\{1,2,3,4\}$

$$
\begin{aligned}
& \langle 1,2,3,4\rangle \\
& \langle 2,3,4,1\rangle \\
& \langle 2,2,41\rangle \\
& \langle 3,4,1\rangle
\end{aligned} \quad \times
$$

Thu 9.8 let S be a set and $|S|=n$. The number of permutations is n !
Proof \#1: by product rule.
let S_{1} be Slfirst choice, S_{2} be S_{1} lsecond choice, etc.

$$
\begin{aligned}
\left|S_{\times} S_{1} \times S_{2} \times \cdots \times S_{n-1}\right| & =|S| \cdot\left|S_{1}\right| \cdot\left|S_{2}\right| \cdots\left|S_{n-1}\right| \text { by prod. } \\
& =n \cdot(n-1) \cdot(n-2) \cdot \cdots \cdot(1) \\
& =n!
\end{aligned}
$$

Proof H 2: w/ a free diagram.

Choose from form SIb
s i choices
d

Def let n, k be nonnegative integers $w / k \leqslant n$.

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad \text { "n choose } k \text { " }
$$

Choosing k items from n
let $S=\{1,2,3,4,5\}, k=3$
now to select K items for S ?

order matters	repetition allowed	no repetition allowed
k	$n!$ $n-k)!$	
order doesn't matter	$\binom{n+k-1}{k}$	$\binom{n}{k}$

