P	ractice Quiz 2
N	ames
P	roblem 1 (20 points)
	this problem, you will prove that $2 \log n = O(\log n)$ using the definition of big O. Follow the three steps are fully.
(5 poin	ts) Write down the definition of big O.
(10 poin	ts) Give a c and a n_0 that can be used to prove that $2 \log n = O(\log n)$.
(=	
(5 poin	ts) Explain what it would mean for this c and n_0 to work in a proof that $2 \log n = O(\log n)$, and very briefly explain why they do (write one sentence, draw a graph, etc).

Problem 2 (20 points) n		
Complete the proof that $\sum_{i=1}^{n} (2i-1) = n^2$ using mathematical induction by filling in the following. Note		
that $\sum_{i=1}^{n} (2i-1) = 1+3+5\cdots + (2n-1)$. Each underline is worth one point. The proof of the base case		
is worth two points. The proof of the inductive case is worth eight points.		
<i>Proof.</i> We prove that $\sum_{i=1}^{n} (2i-1) = n^2$.		
First, let $P(n)$ be the predicate that		
We prove that $\underline{\hspace{1cm}}$ (something to do with P) using mathematical induction over n .		
Base case. We show that (something to do with P).		
Inductive case. We show that (something to do with P).		
Assume (something to do with P). That is,	_	
Assume (something to do with P). That is, (translating the previous blank using the formula, aka, the inductive hypothesis, or IH.).		

Because we proved both _____ and _____, by the principle of mathematical induction, $\forall n \geq 0 : P(n)$.

Problem 3 (40 points)

- (a) Give an example of a function that is **not** one-to-one.
- (b) Suppose $f: A \to B$ is both onto and one-to-one. How do |A| and |B| compare?
- (c) Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined as f(n) = 2n. What is the codomain of f? What is the range of f?
- (d) Suppose we have a recurrence relation describing the runtime of a recursive algorithm as follows: T(0) = 5 and T(n) = T(n-1) + 3. What is T(2)?
- (e) Is $n = O(\log n)$?
- (f) Is $\log n = O(n)$?
- (g) Fill in the rest of the recursive definition of a linked list.

A linked list is either

- (1) An empty list $\langle \rangle$, or
- (2) $\langle x, L \rangle$ where x is a data element and L is _____

Problem 4 (20 points)

(a) For the following algorithm give a proposed function representing the number of primitive operations for the algorithm in terms of the input size, addressing each line and/or loop of the algorithm. You do not need to be precise counting constant numbers of primitive operations (e.g., figuring out exactly how many primitive operations a line does). However, you should be precise about how many times a loop runs.

Algorithm 1

- 1: **for** i = 1 to $n \cdot n$ **do**2: **if** 3|i **then**
- 3: for j = 1 to n do
- 4: x = x + 1

Algorithm 1 takes f(n) =

primitive operations.

(b) For the f(n) you gave in (a), give the "tightest" (or asymptotically smallest) g(n) such that f(n) = O(g(n)).

f(n) = O(