Practice Quiz 2

Names \qquad

Problem 1 (20 points)
In this problem, you will prove that $2 n^{2}+3=O\left(n^{3}\right)$ using the definition of big O. Follow the three steps carefully.
(5 points) Write down the definition of big O .
(10 points) Give a c and a n_{0} that can be used to prove that $2 n^{2}+3=O\left(n^{3}\right)$.
(5 points) Explain what it would mean for this c and n_{0} to work in a proof that $2 n^{2}+3=O\left(n^{3}\right)$, and very briefly explain why they do (write one sentence, draw a graph, etc).

Problem 2 (20 points)

Complete the proof that $\sum_{i=0}^{n} i=\frac{1}{2} n(n+1)$ using mathematical induction by filling in the following. Note that $\sum_{i=0}^{n} i=0+1+2+\cdots+(n-1)+n$. Each underline is worth one point. The proof of the base case is worth two points. The proof of the inductive case is worth eight points.

Proof. We prove that $\sum_{i=0}^{n} i=\frac{1}{2} n(n+1)$.
First, let $P(n)$ be the predicate that \qquad .

We prove that \qquad (something to do with P) using mathematical induction over n.

Base case. We show that \qquad (something to do with P).

Inductive case. We show that \qquad (something to do with P).

Assume \qquad (something to do with P). That is,
(translating the previous blank using the formula, aka, the inductive hypothesis, or IH.).

Because we proved both \qquad and \qquad , by the principle of mathematical induction, $\forall n \geq 0: P(n)$.

Problem 3 (40 points)
(a) Give an example of a function that is not one-to-one.
(b) Suppose $f: A \rightarrow B$ is both onto and one-to-one. How do $|A|$ and $|B|$ compare?
(c) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined as $f(n)=2 n$. What is the codomain of f ? What is the range of f ?
(d) Suppose we have a recurrence relation describing the runtime of a recursive algorithm as follows: $T(0)=5$ and $T(n)=T(n-1)+3$. What is $T(2) ?$
(e) Is $n=O(\log n)$?
(f) Is $\log n=O(n)$?
(g) Fill in the rest of the recursive definition of a linked list.

A linked list is either
(1) An empty list \rangle, or
(2) $\langle x, L\rangle$ where x is a data element and L is \qquad
(a) For the following algorithm give a proposed function representing the number of primitive operations for the algorithm in terms of the input size, addressing each line and/or loop of the algorithm. You do not need to be precise counting constant numbers of primitive operations (e.g., figuring out exactly how many primitive operations a single line does). However, you should try to be precise about how many times a loop runs.

```
Algorithm 1
    for \(i=1\) to \(2 n\) do
        \(j=i\);
        while \(j>1\) do
            \(j=j / 3 ;\)
```

Algorithm 1 takes $f(n)=$ primitive operations.
(b) For the $f(n)$ you gave in (a), give the "tightest" (aka asymptotically smallest) $g(n)$ such that $f(n)=O(g(n))$.
$f(n)=O(\quad)$

