Name $\qquad$

Problem 1 (20 points)
Consider the relation $\geq$ on integers. That is, for all $x, y \in \mathbb{Z}, x \geq y$ if the value of $x$ is greater than or equal to the value of $y$.

- Is it reflexive?
- Is it irreflexive?
- Is it symmetric?
- Is it anti-symmetric?
- Is it transitive?
- Is it an equivalence relation?
- Is it a partial order?
- Is it a total order?

Problem 2 (20 points)
(a) Is the following graph bipartite? (If yes, label the nodes as belonging to $L$ or $R$.)

(b) Is the following graph planar? (If yes, re-draw it to demonstrate.)

(c) Draw $K_{4}$, the complete graph on four nodes.
(d) Draw a directed graph that contains a cycle.
(a) Let $A=\langle 1,2,3,4,5\rangle$ be a 5 -element array. How many permutations of $A$ are there?
(b) Suppose we draw a 5 -card hand from a standard deck with 52 cards. Define the random variable $X$ to mean the number of aces in the hand. What is $X(\{A \varnothing, 2 \mathbf{\&}, J \mathbf{\&}, Q \diamond, 7 \oslash\})$ ?
(c) Now, define $X_{i}$ to be a random variable that is 1 if the $i$ th card in the list is an ace and 0 otherwise.

What is $X_{1}(\{A \oslash, 2 \mathbf{\&}, J \mathbf{Q}, Q \diamond, 7 \bigcirc\} ?$
What is $X_{5}(\{A \odot, 2 \boldsymbol{q}, J \boldsymbol{\ell}, Q \diamond, 7 \triangleright\}$ ?
(d) For $i \in\{1,2,3,4,5\}$, what is $E\left[X_{i}\right]$ ?
(e) By linearity of expectation, $E\left[X_{1}+X_{2}+X_{3}+X_{4}+X_{5}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+E\left[X_{3}\right]+E\left[X_{4}\right]+E\left[X_{5}\right]$. Use this fact to compute the expected number of aces in the hand.
(a) Suppose you draw 2 cards from a standard 52 -card deck. How many distinct hands are possible?
(b) How many different 8 bit strings exist? (For example, 00101110 is an 8 bit string.)
(c) Let $f: A \rightarrow B$ be a function. Consider the graph $G=(V, E)$ where $V=A \cup B$ and an edge exists from node $a$ to $b$ if $b=f(a)$. Suppose $f$ is one-to-one and onto. Is the proposition $\exists v \in B$ : $\operatorname{indeg}(v)=0$ true or false?
(d) In the following graph, what is the distance from $a$ to $f$ ?

(e) Is the following a valid graph?

(f) Suppose you want to represent the blood relationships between people as a graph. Would this be best represented using a directed graph or an undirected graph?
(g) Give a relation that is both symmetric and anti-symmetric.
(h) What are the properties of a strict partial order?
(i) Let $A=\{1,2,3,4\}$ and let $R$ be a relation on $A$ such that for any $a, b \in A, a R b$ if $a$ and $b$ have the same parity (i.e., are both even or both odd). $R$ is an equivalence relation. What are its equivalence classes?
(j) Let $S$ be any set and let $R$ be an equivalence relation on $S$. Suppose that $a \in S$ is not in the equivalence class of $b \in S$; that is, $a \notin[b]$. Is $\langle a, b\rangle \in R,\langle a, b\rangle \notin R$, or do we not know?

