Plan for today

finish challenge problem 1: 2D Closest Points

intro challenge problem 2: Segmented Least Squares

Closest pair of points: divide-and-conquer algorithm

- Divide: draw vertical line L so that n/2 points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.
- Return best of 3 solutions.

12

seems like $\Theta(n^2)$

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < d.

• Observation: suffices to consider only those points within d of line L.

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < d.

- Observation: suffices to consider only those points within d of line *L*.
- Sort points in 2 d-strip by their *y*-coordinate.
- Check distances of only those points within 7 positions in sorted list!

How to find closest pair with one point in each side?

Def. Let s_i be the point in the 2 d-strip with the i^{th} smallest y-coordinate.

Claim. If |j-i| > 7, then the distance between s_i and s_j is at least d.

Pf.

- Consider the 2d-by-d rectangle R in strip whose min y-coordinate is y-coordinate of s_i.
- Distance between s_i and any point s_j above R is $\geq d$.
- Subdivide R into 8 squares. diameter of square is $d/\sqrt{2} < d$
- At most 1 point per square.
- At most 7 points other than s_i can be in R.

constant can be improved with more refined geometric packing argument

Closest pair of points: divide-and-conquer algorithm

CLOSEST-PAIR $(p_1, p_2, ..., p_n)$

Compute vertical line L such that half the points are on each side of the line.

 $d_1 \leftarrow CLOSEST-PAIR(points in left half).$

 $d_2 \leftarrow CLOSEST-PAIR(points in right half).$

 $d \leftarrow \min \{ d_1, d_2 \}.$

 $A \leftarrow$ list of all points closer than d to line L.

Sort points in *A* by *y*-coordinate.

Scan points in *A* in *y*-order and compare distance between each point and next 7 neighbors.

If any of these distances is less than d, update d.

RETURN d.

$$\leftarrow$$
 $T(\lfloor n/2 \rfloor)$

$$\leftarrow$$
 $T([n/2])$

$$\leftarrow$$
 $O(n)$

$$\leftarrow$$
 $O(n \log n)$

$$\leftarrow$$
 $O(n)$

Think by yourself for a while...

What is the solution to the following recurrence? (make a guess)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n \log n) & \text{if } n > 1 \end{cases}$$

- **A.** $T(n) = \Theta(n)$.
- **B.** $T(n) = \Theta(n \log n)$.
- C. $T(n) = \Theta(n \log^2 n)$.
- $\mathbf{D}. \quad T(n) = \Theta(n^2).$

Refined version of closest-pair algorithm

- Q. How to improve to $O(n \log n)$?
- A. Don't sort points in strip from scratch each time.
 - Each recursive call returns two lists: all points sorted by *x*-coordinate, and all points sorted by *y*-coordinate.
 - Sort by merging two pre-sorted lists.

Trace through

CLOSEST-PAIR $(p_1, p_2, ..., p_n)$

Compute vertical line L such that half the points are on each side of the line.

 $d_1 \leftarrow CLOSEST-PAIR(points in left half).$

 $d_2 \leftarrow CLOSEST-PAIR(points in right half).$

 $d \leftarrow \min \{ d_1, d_2 \}.$

 $A \leftarrow$ list of all points closer than d to line L.

Sort points in *A* by *y*-coordinate.

Scan points in *A* in *y*-order and compare distance between each point and next 7 neighbors.

If any of these distances is less than d, update d.

RETURN d.

how many recursive calls do you make?

where are the lines L for each call?

which points end up together in base case calls?

which points form d for each call?

which points are in A?

which are the 7 neighbors of each point in A?

