Plan for today

finish challenge problem 1: 2D Closest Points
intro challenge problem 2: Segmented Least Squares

2D closest points problem

Closest pair of points: divide-and-conquer algorithm

Divide: draw vertical line L so that n/2 points on each side.

Conquer: find closest pair in each side recursively.

Combine: find closest pair with one point in each side.

Return best of 3 solutions.

AN

seems like O(n?)

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < d.

* Observation: suffices to consider only those points within d of line L.

L
@
. /.
@
@

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < d.

* Observation: suffices to consider only those points within d of line L.

* Sort points in 2 d -strip by their y-coordinate.

* Check distances of only those points within 7 positions in sorted list!

\

why?
® L
Sg ° . ®
e ® sg. e
S °
@
S6
@
o o s. / 21
S4 (") ®
o """""
12 o . 4 =min(12, 21)
" $3 o o o
® ‘Sz °
® s °

How to find closest pair with one point in each side?

Def. Let s; be the point in the 2 d -strip with the i*» smallest y-coordinate.

Claim. If |j-i| > 7, then the distance between L
s; and s; is at least d.

Pf.
* Consider the 2d-by-d rectangle R in strip ij
whose min y-coordinate is y-coordinate of s,.

- Distance between s; and any point s; I . |
. R | - 1hd
above R is = d. MR | |
. . diameter of i | | T |
* Subdivide R into 8 squares. |amede/r 02 iqduare ° | i | 14
* At most 1 point per square. rd REEEE - @] e |
\)

At most 7 points other than s; can be in R. =

\

constant can be improved with more

refined geometric packing argument

2d

Closest pair of points: divide-and-conquer algorithm

CLOSEST-PAIR(p1, p2, ..., Pn)

Compute vertical line L such that half the points «—

are on each side of the line.

d; <= CLOSEST-PAIR(points in left half). «—

d2 <= CLOSEST-PAIR(points in right half). -

d emin{dl,dz}.

A < list of all points closer than d to line L. N

Sort points in A by y-coordinate. D E—

Scan points in A in y-order and compare distance

between each point and next 7 neighbors. «—

If any of these distances is less than d, update d.

RETURN d.

with table: what’s the base case?

O(n)

T([n/2))

T([n/2])

O(n)

O(n log n)

O(n)

Think by yourself for a while...

What is the solution to the following recurrence? (make a guess)

O(1) ifn=1
T(n) =

 T(In/2]) + T(In/2]) + O(nlogn) ifn>1

T(n) = O(n).
T(n) = O(nlog n).

T(n) = O(nlog2n).

o N v »

T(n) = O(n?).

Refined version of closest-pair algorithm

Q. How to improve to O(n log n) ?
A. Don’t sort points in strip from scratch each time.
* Each recursive call returns two lists: all points sorted by x-coordinate,
and all points sorted by y-coordinate.
* Sort by merging two pre-sorted lists.

Trace through

CLOSEST-PAIR(p1, p2, ..., Pn)

Compute vertical line L such that half the points
are on each side of the line.

d; <= CLOSEST-PAIR(points in left half).

d2 <= CLOSEST-PAIR(points in right half).

d < min{d;,d> }.

A < list of all points closer than d to line L.
Sort points in A by y-coordinate.

Scan points in A in y-order and compare distance
between each point and next 7 neighbors.
If any of these distances is less than d, update d.

RETURN d.

how many recursive
calls do you make?

where are the lines L
for each call?

which points end up
together in base case
calls?

which points form d
for each call?

which points are in
A?

which are the 7
neighbors of each
point in A?

10

1.0

0.8 -

0.6 -

0.4

0.2 1

0.0

0.0

0.2

0.4

0.6

0.8

1.0

11

