True or false? In every instance of the Stable Matching Problem, there is a stable matching
containing a pair (m,w) such that m is ranked first on the preference list of w and w is ranked
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problem 2 should say:
Suppose we have 2n double rooms and 2n people to assign to them...

This is called the stable roommate problem
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2. There are many other settings in which we can ask questions related to some type of
“stability" principle. Here’s one, involving assigning roommates.

Suppose we have n double rooms and 2n people to assign to them. Every person has a
preference list indicating their ordered preference of rooming with every other person. For
example, here is a preference list for four people who need to be assigned to two rooms:

Allie: Brenda, Cat, Diane
Brenda: Cat, Allie, Diane
Cat: Allie, Brenda, Diane
Diane: Allie, Brenda, Cat

In the stable roommate problem, we would like to find an assignment of roommates that is
stable; that is, an assignment of roommates where no pair of people who are not assigned
to be roommates both prefer one another over their currently assigned roommate.



Closing out stable matching basics
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Overall goals for CSCI 332

* Take real-world problems and precisely define computational problems
Design correct and efficient algorithms for these problems
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* Last week, we saw a proof that Gale-Shapley returns a stable matching for any

CO(Ve(ANQSS

iInput.

* This week, we focus on defining what it means for algorithms to be efficient
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A definition of efficiency?

An algorithm is efficient if, when implemented, it runs quickly on real input instances.
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A definition of efficiency?

A~ @Kaz S et ient b actnrieves
mq\\*o\%\%\“ﬁ o \len P&/@@W&M&,
\\f\@\/\ wrode locl Cearchn.



Brute force

Brute force. For many nontrivial problems, there is a natural brute-force search
algorithm that checks every possible solution.
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A brute force sorting algorithm

Input: an array A of integers W '\v\x*lszP<>
Output: a sorted version of A \

V)
For each ordering A’ of A: ///j9
If A’ 1s sorted:
Return A

What is the runtime of this algorithm?
1.n

2. nlogn

3.n°

4. logn - 2"

5.n-n!



o CL N

Polynomial running time

Desirable scaling property. When the inWbles, the algorithm should slow
down by at most some multiplicative constant factor C.

Ao 1

n time n time C
4\
Test 1 50 4 sec 100 8 sec 2
= = )
Test 2 70 5 sec 140 14 sec %
—
Test 3 90 7 sec 180

90 180 24sec 5{
o, )
flle |

time n time

Test 1 40 5 sec 80 20 sec
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Test 3 75 17.5 sec 150 70 sec

—

C
Test 2 10 0.3 sec 20 1.2 sec L/(’



Why it matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds }0%° years, we simply record the algorithm as
taking a very long time. 7
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n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec

n =30 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long

n =100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 10'7 years very long
\/ n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long
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Polynomial running time

We say that an algorithm is efficient if it has a polynomial running time.

Theory. Definition is insensitive to model of computation.

Practice. It really works!
* The poly-time algorithms that people develop have both small constants and

small exponents.
* Breaking through the exponential barrier of brute force typically exposes some

crucial structure of the problem. 0

n

/

EXCG pt i O n S . Map graphs in polynomial time

Mikkel Thorup*

* Some exponential algorithms are fast in practice
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because worst-case inputs don’t occur.

Chen, Grigni, and Papadimitriou (WADS’97 and STOC’98)
PY 14 G I - b)) - - have introduced a modified notion of planarity, where two
a aCt I C p O y_t I m e a g O r I t m S . faces are considered adjacent if they share at least one point.

The corresponding abstract graphs are called map graphs.
Chen et.al. raised the question of whether map graphs can be
recognized in polynomial time. They showed that the decision
problem is in NP and presented a polynomial time algorithm
for the special case where we allow at most 4 faces to intersect
in any point — if only 3 are allowed to intersect in a point, we
get the usual planar graphs.

Chen et.al. conjectured that map graphs can be recognized
in polynomial time, and in this paper, their conjecture is settled

affirmatively.
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