Plan for today

wrap up of greedy algorithms
quiz

break

discuss quiz

A & W\W



2 minutes to think by yourself. Then hold up fingers with your answer.

Recall the job scheduling problem: find largest set of compatible jobs.

Suppose that each job also has a positive weight and the goal is to
find a maximum weight subset of mutually compatible intervals.
Is the earliest-finish-time-first algorithm still optimal?

XK ) Yes, because greedy algorithms are always optimal.
Yes, because the same proof of correctness is valid.
\jiie:>i No, because the same proof of correctness is no longer valid.

No, because you could assign a huge weight to a job that overlaps
the job with the earliest finish time.
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Discuss with your table

Suppose that each job also has a positive weight and the goal is to
find a maximum weight subset of mutually compatible intervals.

Do you think there is a greedy algorithm for this problem?
— ’7
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Is there a (correct) greedy algorithm for every problem?
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Greedy algorithms summary

We studied two problems:
* all-pairs shortest paths
* job scheduling
(1%
There isn’t always a greedy algorithm for a problem.
Discuss with your table: what might you look for in a problem to think it may have a
greedy algorithm?



Greedy algorithms summary

We studied two problems:
* all-pairs shortest paths

* job scheduling C/UVW

v/
There isn’t always a greedy algorithm for a problem.

%

It takes careful thinking to prove a greedy algorithm works.
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1. (5 points) Recall the algorithm for the interval scheduling problem. The input to

the problem is a set of n jobs with start times s1,s9,...,5, and finishing times

f17f2a'°°7fn-
Re-order jobs by finishing time so that fi < fo < --- < f,, +— @ ( L | OJ V\\
g=] NALS
Forj=1ton = A

If job j is compatible with the jobs in S: ~—— N
Add job j to S
Return S

In this problem you will analyze the runtime of a naive version of this algorithm, and
gre. You should assume that you can sort

a list in @(n logn) steps in the worst case.

(a) Suppose that we implement the if statement naively by comparing the new job j
to every job in S. For some function f(n) that you choose, give a bourrdof-the
formmOt{f{m)) on the running time of this algorithm on an input of size n (i.e., a
bound on the number of operations performed by the algorithm).
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Re-order jobs ishing time so that f; < fo < --- <¥,

§={} "N ’hMS o

Forj=1ton

If job j is compatible with the jobs in S: ‘ @
Add job j to S _
Return S —_

2
| | . | (n-1)=_(L
(b) For this same function f(n), show that the running time of the algorithm on an /
1nput of size n is also (f(n)). (This shows an asymptotically tight bound of s
) on the running time.)
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2. (10 points) This problem is about the same setup from the homework:

Every fall, your family harvests apples at the old family orchard. You have many
varied sizes of bins that you harvest the apples into, and a large fleet of identical carts
that can all take a total weight of W. Your family has always done it exactly this way:

e Park a cart at the orchard.

e As bins of apples are finished, pack them onto the cart in exactly the order they
arrive.

e Once a bin arrives that would put the cart over its maximum weight, send the
cart off and start loading the next cart.

According to this system, we could index the bins with the variable ¢ and write the
weight of the i*! bin w;. Because your family members pick apples at different speeds
and fill the bins to different levels, the w; values are varied and unpredictable, and
because the apple orchard produces at different levels every year, the total number of
bins that will be loaded varies year to year as well. c1 cz > N

— -
(a) (3 points) Suppose that you get bins 1,2, . .. 10 with weightsr?)O, 50', 30, 3(2_(940, 10, 30, 20, 7!

and your carts have a capacity of ﬂ Is the solution C 0\()( C T P aca \ O Q
Cart 1: bins 1 anr a total of 80 pounds)

Cart 2: bins 3 anr a total of 60 pounds)

e Cart 3: bins 5, 6, 7, and 8 (for a total of 100 pounds) 5

e Cart 4: bins 9, 10 (for a total of 90 pounds) \6/@/

optimal?

(<)

(b) (3 points) Is the solution from@ what would be found by the greedy algorithm?



(c) (4 points) In order to prove that the greedy algorithm always uses the fewest carts
possible, we can prove that the greedy algorithm “stays ahead” of any optimal
solution. Suppose that we identify bins j1, jo,..., jm as the final bins that are
packed into each cart in some optimal solution, and bins /1, /o, ..., £; as the final
bins packed into each cart by the greedy solution. In the example solution from
(a), j1 = 2,j2 = 4,73 = 8, and j4 = 10.

To prove that the greedy algorithm stays ahead, we would want to prove that
(fill in the blank):

For all » < k, we have Z > ffﬁ

rexw\v&
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Divide-and-conquer paradigm

Divide-and-conquer.
* Divide up problem into several subproblems (of the same kind).
* Solve (conquer) each subproblem recursively.
* Combine solutions to subproblems into overall solution.

Our goals.
* Design correct algorithms using this powerful algorithm design strategy
* Be able to analyze the runtimes of recursive algorithms.
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Mergesort

input
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First Draft
of a

Report on the
EDVAC

John von Neumann
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Mergesort

* Recursively sort left half.

input

A

<

sort left half

A

G

First Draft
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Report on the
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John von Neumann
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Mergesort

* Recursively sort left half.

* Recursively sort right half.

input

sort left half

A G L O R

sort right half

of a
Report on the
EDVAC

John von Neumann

First Draft

12



Mergesort

* Recursively sort left half.
* Recursively sort right half.
* Merge two halves to make sorted whole.

First Draft
of a

Report on the
EDVAC

John von Neumann

input

sort left half

A G L O R

sort right half

merge results

A G H I L M O R S T
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Mergesort

* Recursively sort left half.
* Recursively sort right half.
* Merge two halves to make sorted whole.

L\ = £ex hhalf A & »\ N T
Corled-L, = WSM (L)
SDM&‘Lléwgo\A’(LLS

R UNER o, SoFRA-L, amd sofFeal_ Ly
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Merging
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Merging

Goal. Combine two sorted lists A and B into a sorted whole C.
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Merging

Goal. Combine two sorted lists A and B into a sorted whole C.
* Scan A and B from left to right.
* Compare a; and b,.
* If a; < bj, append a; to C (no larger than any remaining element in B).
* Ifa; > bj, append b;to C (smaller than every remaining element in A).

sorted list A sorted list B

merge to form sorted list C

2 3 7 10 11



Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

11

16

20

23
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Given two sorted lists 4 and B, merge into sorted list C.
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B
3 V4 10 14 18 2
4 t

compare minimum entry in each list: copy 2

sorted list C
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

3 7 10 14 18

f

compare minimum entry in each list: copy 3

sorted list C

2

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

7/ 10 14 18
f
sorted list C
2 3

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

7 10 14 18

f

compare minimum entry in each list: copy 7

sorted list C

2 3

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B
10 14 18
f
sorted list C
2 3 V4

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

10 14 18

f

compare minimum entry in each list: copy 10

sorted list C

2 3 7

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A

sorted list C

2

10

18

sorted list B

11

16

20

23

20



Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

14 18

f

compare minimum entry in each list: copy 11

sorted list C

2 3 7 10

11

16

20

23

20



Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A

sorted list C

2

10

18

11

sorted list B

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

14 18

f

compare minimum entry in each list: copy 14

sorted list C

2 3 7 10 11

20

23

21



Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2 3 7 10 11 14

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

18 16

t t

compare minimum entry in each list: copy 16

sorted list C

2 3 7 10 11 14

20

23

22



Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16

20

23

23



Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

18

f

compare minimum entry in each list: copy 18

sorted list C

2 3 7 10 11 14 16

20

23

23



Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B
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sorted list C
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

list A exhausted: copy 23

sorted list C

2 3 7 10 11 14 16

18

20

23

25



Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16

18

20

23
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Merge demo

Is there a difference between a worst-case and best-case input for number of steps
taken by this algorithm?

1. Yes

2. No

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16 18 20 23
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Merge demo

Is there a difference between a worst-case and best-case input for number of steps
taken by this algorithm? Discuss with table

1. Yes

2. No

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16 18 20 23
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Merge demo

Is there a difference between a worst-case and best-case input for number of steps
taken by this algorithm? Discuss with table

1. Yes

2. No

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16 18 20 23
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Merge demo

Is there a difference between a worst-case and best-case input for number of steps
taken by this algorithm? Discuss with table: what is the runtime?

1. Yes
2. No

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16 18 20 23

30



Mergesort

* Recursively sort left half.
* Recursively sort right half.

* Merge two halves to make sorted whole.

mergesort (L) :
L, = first half of L
L, = first half of L
sorted_L,; = mergesort (L)
sorted_L, = mergesort(L,)

return merged L; and L,

31



Approach # 1: unroll the recurrence
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Approach # 1: unroll the recurrence

Proposition. If T (n) satisfies the following recurrence, then T(n) is...

v

0 itn=1
T(n) = A

2T(n/2) + n ifn>1

33
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T
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Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.
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Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

v

0 itn=1
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logon

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T (n/2) + n itn>1

\
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Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T (n/2) + n itn>1

\

T (n) n =n

T

T(n/?2) T(n/2) 2 (n/2) - n

N 7\

T(n/4) T(n/4) T(n/4) T(n/4) 4 (n/4) _

AV AV ATEYA

T(n/8) T(n/8) Twm/8) Tn/8) Tn/8) Tn/8 Twn/8) T(n/s) 8 (n/8) = n

T(n) =nlogan
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Choose an answer

fancymergesort (L) :
L, = first third of L
L, = second third of L
L; = last third of L
sorted_L, = mergesort(L;)
sorted_L, = mergesort(L,)
sorted_L, = mergesort (Ly)

return merged L;,L,,L;

What is a valid recurrence relation for fancymergesort?
1. T(n) = n?

2. T(n) =3T(n/3) +n

3. T(n) = cnlogyn

4. T(n) = nT(n) + 3n
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