_ VVLZ/\/%/Q spr o\\/\a(«_ﬁ%(\/\ueY

(UV\HVVK—CL @/’“Z e_CuUAN N e O_Kas

— \DWVW\C} e (Ourex loovvnd oA
sowh‘m% CUVA g |

— @umh’\/\% I VUCAT TS

— S\M\/\Q/U}

Mergesort

* Recursively sort left half.

* Recursively sort right half.
* Merge two halves to make sorted whole.

First Draft
of a

Report on the
EDVAC

John von Neumann

input

sort left half

A G L O R

sort right half Y d / 2 [O m7

merge results

A G H I L M O R S T v\

12

Merging

Goal. Combine two sorted lists A and B into a sorted whole C.
* Scan A and B from left to right.
* Compare a; and b,.
* If a; < bj, append a; to C (no larger than any remaining element in B).
* Ifa; > bj, append b;to C (smaller than every remaining element in A).

sorted list A sorted list B
18 20 23

EE——e

merge to form sorted list C

2 3 7 10 11

14

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

3 7 10 14 18 2

g A

11

16

20

23

15

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B
3 V4 10 14 18 2
4 t
sorted list C

11

16

20

23

16

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B
3 V4 10 14 18 2
4 t

compare minimum entry in each list: copy 2

sorted list C

11

16

20

23

16

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2

11

16

20

23

17

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

3 7 10 14 18

f

compare minimum entry in each list: copy 3

sorted list C

2

11

16

20

23

17

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

7/ 10 14 18
f
sorted list C
2 3

11

16

20

23

18

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

7 10 14 18

f

compare minimum entry in each list: copy 7

sorted list C

2 3

11

16

20

23

18

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B
10 14 18
f
sorted list C
2 3 V4

11

16

20

23

19

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

10 14 18

f

compare minimum entry in each list: copy 10

sorted list C

2 3 7

11

16

20

23

19

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A

sorted list C

2

10

18

sorted list B

11

16

20

23

20

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

14 18

f

compare minimum entry in each list: copy 11

sorted list C

2 3 7 10

11

16

20

23

20

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A

sorted list C

2

10

18

11

sorted list B

20

23

21

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

14 18

f

compare minimum entry in each list: copy 14

sorted list C

2 3 7 10 11

20

23

21

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2 3 7 10 11 14

20

23

22

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

18 16

t t

compare minimum entry in each list: copy 16

sorted list C

2 3 7 10 11 14

20

23

22

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16

20

23

23

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

18

f

compare minimum entry in each list: copy 18

sorted list C

2 3 7 10 11 14 16

20

23

23

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16

18

20

23

24

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

list A exhausted: copy 20

sorted list C

2 3 7 10 11 14 16

18

20

23

24

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16

18

20

23

25

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

list A exhausted: copy 23

sorted list C

2 3 7 10 11 14 16

18

20

23

25

Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16

18

20

23

26

Merge demo

Is there a difference between a worst-case and best-case input for number of steps
taken by this algorithm? (“JUSk AL VVLQ/WAQ,\
1. Yes A e O Vq

2. No Tz

sorted list A sorted list B

L e ¥ A RN
sorted list C T T\

2 3 7 10 11 14 16 18 20 23 I

N S 4

27

Merge demo

Is there a difference between a worst-case and best-case input for number of steps
taken by this algorithm? Discuss with table

1. Yes

2. No

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16 18 20 23

28

Merge demo

Is there a difference between a worst-case and best-case input for number of steps
taken by this algorithm? Discuss with table

1. Yes

2. No

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16 18 20 23

29

Merge demo

Is there a difference between a worst-case and best-case input for number of steps
taken by this algorithm? Discuss with table: what is the runtime?

1. Yes
2. No

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16 18 20 23

30

Mergesort
N
* Recursively sort left half. 1 (l/\\ S (1) +Lr

* Recursively sort right half.

* Merge two halves to make sorted whole.

mergesort (L) :

, = first half of L
a4 S
= first half of L

sorted_L, = mergesort (L)
e

sorted_L, = mergesort(lQ)

retur6:ﬁgzggglq aﬁaftj:::> /A f;%iﬂfkg

/r(m§>t:vq0f%¥'(ﬂ2$3 fUWb”&ﬁ_gy%?%ﬁ%ylSDf1
ovnau/\md*@/‘(QWL 4

o " 2 T(% V)
g1 51 Mre&c}e%s%u@ dedbe

Calls d

Approach # 1: unroll the recurrence

32

Approach # 1: unroll the recurrence

C W (2 e Aad o

Proposition. If T (n) satisfies the following recurrence, then T(n) is...

v

0 itn=1
T(n) = A

2T(n/2) + n ifn>1

33

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T(n/2) + n ifn>1

\

34

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T(n/2) + n ifn>1

\

T (n)

34

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T(n/2) + n ifn>1

\

34

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T(n/2) + n ifn>1

\

T (n)

T

T(n/2) T(n/2)

N 7\

T(n/4) T(n/4) T(n/4) T(n/4)

34

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T(n/2) + n ifn>1

\

T (n)
T(n/?2) T(n/?2)
T(n/4) T(n/4) T(n/4) T(n/4)

AV AV ATEYA

T(n/8) Tn/8) Tm/8) Tmn/8 Tm/8) Tn/8) T(n/8) T(n/l)

34

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then 7T'(n) = n logs n.

v

0
T(n) = <«

\/W: \\Ogb\/\
/\

T(n/2)

T(n/8) T(n/8) T(n/8) T(n/8)

\/

itn=1 assuming n
is a power of 2

| 2T(n/2) +a))it n > 1
E——

T(n) '\

T(n/2) 2 (m _

% 6

T(n/8) T(n/8) T(n/8) T(n/8) > - N

34

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T(n/2) + n ifn>1

\

T (n) n —

T

T(n/2) T(n/2)

N 7\

T(n/4) T(n/4) T(n/4) T(n/4)

AV AV ATEYA

T(n/8) Tmn/8) Tm/8 Tm/8 Tm/8) Twm/8) Tm/8) T(n/8)

34

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

v

0 itn=1
T(n) = A

2T(n/2) + n ifn>1

T (n)
T(n/?2) T(n/?2)
T(n/4) T(n/4) T(n/4) T(n/4)

AV AV ATEYA

T(n/8) Tmn/8) Tm/8 Tm/8 Tm/8) Twm/8) Tm/8) T(n/8)

AN

assuming n
is a power of 2

2 (nl2) =

34

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T (n/2) + n ifn>1

\

T (n) n — n
T(n!2) T(n/2) 2(2) =n
T(n/4) T(n/4) T(n/4) T(n/4) 4 (n/4) =n

AV AV ATEYA

T(n/8) Tmn/8) Tm/8 Tm/8 Tm/8) Twm/8) Tm/8) T(n/8)

34

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

v

0 itn=1
T(n) = A

2T(n/2) + n ifn>1

T (n)
T(n/?2) T(n/?2)
T(n/4) T(n/4) T(n/4) T(n/4)

AV AV ATEYA

T(n/8) Tmn/8) Tm/8 Tm/8 Tm/8) Twm/8) Tm/8) T(n/8)

AN

assuming n
is a power of 2

2 (nl2) =

4 (n/4) =

8 (n/8) =

34

logon

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T (n/2) + n itn>1

\

T (n) n —

T

T(n/2) T(n/2) 2(mf2) =

N 7\

T(n/4) T(n/4) T(n/4) T(n/4) 4 (n/4) =

AV AV ATEYA

T(n/8) Tn/8) Tm/8 Tm/8 Tm/8 Tm/8) Twm/8) T(nl/8) 8 (n/8) =

34

logon

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T (n/2) + n itn>1

\

T (n) n =n

T

T(n/?2) T(n/2) 2 (n/2) - n

N 7\

T(n/4) T(n/4) T(n/4) T(n/4) 4 (n/4) _

AV AV ATEYA

T(n/8) T(n/8) Twm/8) Tn/8) Tn/8) Tn/8 Twn/8) T(n/s) 8 (n/8) = n

T(n) =nlogan

34

Choose an answer

fancymergesort (L) :

IS
Ly = first third of L \A VA DWC)\\

L, = second third of L /((V\B/,ZTCE}’{’V\

L; = last third of L

sorted_L; = mergesort (L)

sorted_L, = mergesort(L,) ‘/23 CQ\,\\g /]LO T

sorted_L, = mergesort (Ly)

W 4
return merged Ll,Lz,L31\/\ ’/g

What is a valid recurrence relation for fancymergesort?
1. T(n) = n?

2. T(n) =3T(n/3)+n - — /1
3. T(n) =cnlogyn T(ME\ 5 ((3>7LV1

4. T(n) = nT(n) + 3n

N%

35

Proof by induction

v

0

2T (n/2) + n

itn=1

itn>1

AN

assuming n
is a power of 2

36

Proof by induction

Proposition. If ZarySatisfies the followmg+recurrence, then II'(n) =(n log: n.
S\
=)
: N\ Q

0 ifn=1 assuming 7

\
T(n) = "\\‘\ is a power of 2
2T(n/2) + n ifn> _A\!}
"?T
(\&k-l\/\/\” @VMZ) \ 70 T({/\\’—m /O? N

Proot -

(4 ke 2\) §
ASSWM”\\/\Q\JV 7%{ a\((_y_/\ <l/\} '\(((MB:ZT(/Z,B'H/V\
(G m 7)) PranTulea) = pa Log i o
Base_ case - \b p=l WBT(Q: () . And I l@l Q.
L n7l, b T (a2 2T(72) 0

,_2(“_/\2\066‘%\ Lo \pu%IH

—

= ﬂ\oo(\%/ ¥\ .

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

37

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.

37

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.
* Can access the elements only through pairwise comparisons.

37

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.
* Can access the elements only through pairwise comparisons.
* All other operations (control, data movement, etc.) are free.

37

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?
Model of computation. Comparison trees.
* Can access the elements only through pairwise comparisons.

* All other operations (control, data movement, etc.) are free.

Cost model. Number of compares.

37

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?
Model of computation. Comparison trees.

* Can access the elements only through pairwise comparisons.

* All other operations (control, data movement, etc.) are free.

Cost model. Number of compares.

Q. Realistic model?

37

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.
* Can access the elements only through pairwise comparisons.
* All other operations (control, data movement, etc.) are free.

Cost model. Number of compares.

Q. Realistic model?
A1. Yes. Java, Python, C++, ...

Comparable[] a = ...;

can access elements only
. €«
Arrays.sort(a); via calls to compareTo()

37

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.

* Can access the elements only through pairwise comparisons.
* All other operations (control, data movement, etc.) are free.

Cost model. Number of compares.

Q. Realistic model?
A1. Yes. Java, Python, C++, ...

sort (* key=None, reverse=False)

This method sorts the list in place, using only < comparisons between items.

Exceptions are not suppressed - if any comparison operations fail, the entire

sort operation will fail (and the list will likely be left in a partially modified
state).

37

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.
* Can access the elements only through pairwise comparisons.
* All other operations (control, data movement, etc.) are free.

Cost model. Number of compares.
Q. Realistic model?

A1. Yes. Java, Python, C++, ...
A2. Yes. Mergesort, insertion sort, quicksort, heapsort, ...

37

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.
* Can access the elements only through pairwise comparisons.
* All other operations (control, data movement, etc.) are free.

Cost model. Number of compares.

Q. Realistic model?

A1. Yes. Java, Python, C++, ...

A2. Yes. Mergesort, insertion sort, quicksort, heapsort, ...
A3. No. Bucket sort, radix sorts, ...

37

Comparison tree (for 3 distinct keys a, b, and ¢)

38

Comparison tree (for 3 distinct keys a, b, and ¢)

38

Comparison tree (for 3 distinct keys a, b, and ¢)

a<b

code between compares

(e.g., sequence of exchanges)

38

Comparison tree (for 3 distinct keys a, b, and ¢)

a<b

code between compares

(e.g., sequence of exchanges)

b<c

yes no

38

Comparison tree (for 3 distinct keys a, b, and ¢)

a<b

code between compares

(e.g., sequence of exchanges)

b<c

no

38

Comparison tree (for 3 distinct keys a, b, and ¢)

a<b

code between compares

(e.g., sequence of exchanges)

b<c

yes

abc J q<C

yes no

38

Comparison tree (for 3 distinct keys a, b, and ¢)

a<b

code between compares

(e.g., sequence of exchanges)

b<c

yes

abc q<cC

yes no

acb

38

Comparison tree (for 3 distinct keys a, b, and ¢)

a<b

code between compares

(e.g., sequence of exchanges)

b<c

yes

abc q<cC

yes no

acb cab

38

Comparison tree (for 3 distinct keys a, b, and ¢)

a<b

code between compares

(e.g., sequence of exchanges)

b<c a<c

yes no yes

abc q<cC

yes no

acb cab

38

Comparison tree (for 3 distinct keys a, b, and ¢)

a<b

code between compares

(e.g., sequence of exchanges)

b<c a<c

yes no yes

abc a<cC bac

yes no

acb cab

38

Comparison tree (for 3 distinct keys a, b, and ¢)

a<b

code between compares

(e.g., sequence of exchanges)

b<c a<c

yes no yes

abc a<cC bac

yes no yes

acb cab

b<c

38

Comparison tree (for 3 distinct keys a, b, and ¢)

code between compares

(e.g., sequence of exchanges)

b<c a<c

yes

no yes

a<c

yes

yes

b<c

38

Comparison tree (for 3 distinct keys a, b, and ¢)

code between compares

' e g., sequence of exchanges)
w ™

yes A\ \ yes no h
a<c bac J b<c
N \
| yes no yes no
ach j cab J bca J cba J

38

Sorting lower bound

\

N

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

39

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [information theoretic]

39

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [information theoretic]
* Assume array consists of n distinct values a; through a,.

39

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [information theoretic]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height /# of pruned comparison tree.

39

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [information theoretic]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height /# of pruned comparison tree.
* Binary tree of height 4 has < 2" leaves.

< 2" leaves

39

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [information theoretic]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height / of pruned comparison tree.
* Binary tree of height 4 has < 2" leaves.
* n! different orderings = n! reachable leaves.

n! reachable leaves < 2" leaves

39

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [information theoretic]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height / of pruned comparison tree.
* Binary tree of height 4 has < 2" leaves.
* n! different orderings = n! reachable leaves.

2" > #reachable leaves = n !

40

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [information theoretic]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height / of pruned comparison tree.
* Binary tree of height 4 has < 2" leaves.
* n! different orderings = n! reachable leaves.

2" > #reachable leaves = n !

= h > log:(n!)

40

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [information theoretic]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height / of pruned comparison tree.
* Binary tree of height 4 has < 2" leaves.
* n! different orderings = n! reachable leaves.

2" > #reachable leaves = n !
— h = log (n))

>nloggn—n/In2 =

T

Stirling’s formula

40

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case. L<j&

Pf. [information theoretic]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height / of pruned comparison tree.
* Binary tree of height 4 has < 2" leaves.
* n! different orderings = n! reachable leaves.

2" > #reachable leaves = n !
— h = log (n))

>nloggn—n/In2 =

T

Stirling’s formula

Note. Lower bound can be extended to include randomized algorithms.

40

Counting inversions

41

Counting inversions

Music site tries to match your song preferences with others.

41

Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.

41

Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.
* Music site consults database to find people with similar tastes.

41

Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.
* Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

41

Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.

* Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
* Myrank: 1,2,...,n.

e lclol e
1 2 3 4)

41

Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.

* Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
* Myrank: 1,2,...,n.

* Yourrank: ay,a,, ..., a,.

e lclol e
1 2 3 4)

1 3 4 2 5

41

Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.

* Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
* Myrank: 1,2,...,n.

* Yourrank: ag,a,, ..., a,.

* Songs i and are inverted if i < j, buta; > a;

AlEclolE
2 3 4 5
I\
4 5
s: 3-2,4-2

R
B e
2 inversi

41

