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Mergesort

* Recursively sort left half.

* Recursively sort right half.
* Merge two halves to make sorted whole.

First Draft
of a

Report on the
EDVAC

John von Neumann

input

sort left half

A G L O R

sort right half Y d / 2 [ O m7

merge results

A G H I L M O R S T v\

12



Merging

Goal. Combine two sorted lists A and B into a sorted whole C.
* Scan A and B from left to right.
* Compare a; and b,.
* If a; < bj, append a; to C (no larger than any remaining element in B).
* Ifa; > bj, append b;to C (smaller than every remaining element in A).

sorted list A sorted list B
18 20 23

EE——e

merge to form sorted list C

2 3 7 10 11

14



Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

3 7 10 14 18 2

g A

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B
3 V4 10 14 18 2
4 t
sorted list C

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B
3 V4 10 14 18 2
4 t

compare minimum entry in each list: copy 2

sorted list C

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

3 7 10 14 18

f

compare minimum entry in each list: copy 3

sorted list C

2

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

7/ 10 14 18
f
sorted list C
2 3

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

7 10 14 18

f

compare minimum entry in each list: copy 7

sorted list C

2 3

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B
10 14 18
f
sorted list C
2 3 V4

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

10 14 18

f

compare minimum entry in each list: copy 10

sorted list C

2 3 7

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A

sorted list C

2

10

18

sorted list B

11

16

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

14 18

f

compare minimum entry in each list: copy 11

sorted list C

2 3 7 10

11

16

20

23

20



Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A

sorted list C

2

10

18

11

sorted list B

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

14 18

f

compare minimum entry in each list: copy 14

sorted list C

2 3 7 10 11

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2 3 7 10 11 14

20
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

18 16

t t

compare minimum entry in each list: copy 16

sorted list C

2 3 7 10 11 14

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

18

f

compare minimum entry in each list: copy 18

sorted list C

2 3 7 10 11 14 16

20

23

23



Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16

18
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23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

list A exhausted: copy 20

sorted list C

2 3 7 10 11 14 16

18

20

23

24



Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16

18
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

list A exhausted: copy 23

sorted list C

2 3 7 10 11 14 16

18

20

23
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Merge demo

Given two sorted lists 4 and B, merge into sorted list C.

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16

18

20

23
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Merge demo

Is there a difference between a worst-case and best-case input for number of steps
taken by this algorithm? (“JUSk AL VVLQ/WAQ,\
1. Yes A e O Vq

2. No Tz

sorted list A sorted list B

L e ¥ A RN
sorted list C T T\

2 3 7 10 11 14 16 18 20 23 I

N S 4

27



Merge demo

Is there a difference between a worst-case and best-case input for number of steps
taken by this algorithm? Discuss with table

1. Yes

2. No

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16 18 20 23
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Merge demo

Is there a difference between a worst-case and best-case input for number of steps
taken by this algorithm? Discuss with table

1. Yes

2. No

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16 18 20 23
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Merge demo

Is there a difference between a worst-case and best-case input for number of steps
taken by this algorithm? Discuss with table: what is the runtime?

1. Yes
2. No

sorted list A sorted list B

sorted list C

2 3 7 10 11 14 16 18 20 23

30



Mergesort
N
* Recursively sort left half. 1 (l/\\ S ( 1) +Lr

* Recursively sort right half.

* Merge two halves to make sorted whole.

mergesort (L) :

, = first half of L
a4 S
= first half of L

sorted_L, = mergesort (L)
e

sorted_L, = mergesort(lQ)

retur6:ﬁgzggglq aﬁaftj:::> /A f;%iﬂfkg
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Approach # 1: unroll the recurrence
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Approach # 1: unroll the recurrence

C W (2 e Aad o

Proposition. If T (n) satisfies the following recurrence, then T(n) is...

v

0 itn=1
T(n) = A

2T(n/2) + n ifn>1
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Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T(n/2) + n ifn>1

\
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Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
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\

T (n)

T

T(n/2) T(n/2)
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Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T(n/2) + n ifn>1

\

T (n)
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T(n/4) T(n/4) T(n/4) T(n/4)
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Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then 7T'(n) = n logs n.

v

0
T(n) = <«

\/W: \\Ogb\/\
/\

T(n/2)

T(n/8) T(n/8) T(n/8) T(n/8)

\/

itn=1 assuming n
is a power of 2

| 2T(n/2) +a))it n > 1
E——

T(n) '\

T(n/2) 2 (m _

% 6

T(n/8) T(n/8) T(n/8) T(n/8) > - N
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Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

v

0 itn=1
T(n) = A

2T(n/2) + n ifn>1

T (n)
T(n/?2) T(n/?2)
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logon

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T (n/2) + n itn>1

\

T (n) n —

T

T(n/2) T(n/2) 2(mf2) =

N 7\

T(n/4) T(n/4) T(n/4) T(n/4) 4 (n/4) =
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logon

Approach # 1: unroll the recurrence

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T (n/2) + n itn>1

\

T (n) n =n

T

T(n/?2) T(n/2) 2 (n/2) - n

N 7\

T(n/4) T(n/4) T(n/4) T(n/4) 4 (n/4) _

AV AV ATEYA

T(n/8) T(n/8) Twm/8) Tn/8) Tn/8) Tn/8 Twn/8) T(n/s) 8 (n/8) = n

T(n) =nlogan
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Choose an answer

fancymergesort (L) :

IS
Ly = first third of L \A VA DWC)\\

L, = second third of L /((V\B/,ZTCE}’{’V\

L; = last third of L

sorted_L; = mergesort (L)

sorted_L, = mergesort(L,) ‘/23 CQ\,\\g /]LO T

sorted_L, = mergesort (Ly)

W 4
return merged Ll,Lz,L31\/\ ’/g

What is a valid recurrence relation for fancymergesort?
1. T(n) = n?

2. T(n) =3T(n/3)+n - — /1
3. T(n) =cnlogyn T(ME\ 5 ((3>7LV1

4. T(n) = nT(n) + 3n

N%

35




Proof by induction

v

0

2T (n/2) + n

itn=1

itn>1

AN

assuming n
is a power of 2

36



Proof by induction

Proposition. If ZarySatisfies the followmg+recurrence, then II'(n) =(n log: n.
S\
=)
: N\ Q

0 ifn=1 assuming 7

\
T(n) = "\\‘\ is a power of 2
2T(n/2) + n ifn> _A\!}
"?T
(\&k-l\/\/\” @VMZ ) \ 70 T({/\\’—m /O? N

Proot -

(4 ke 2\ ) §
ASSWM”\\/\Q\JV 7%{ a\((_y\_/\ <l/\} '\( ((MB:ZT( /Z,B'H/V\
(G m 7)) PranTulea) = pa Log i o
Base_ case - \b p=l WBT(Q: () . And I l@l Q.
L n7l, b T (a2 2T(72) 0

,_2(“_/\2\066‘%\ Lo \pu%IH
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Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?
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Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.
* Can access the elements only through pairwise comparisons.
* All other operations (control, data movement, etc.) are free.

Cost model. Number of compares.

Q. Realistic model?
A1. Yes. Java, Python, C++, ...

Comparable[] a = ...;

can access elements only
. €«
Arrays.sort(a); via calls to compareTo()

37



Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.

* Can access the elements only through pairwise comparisons.
* All other operations (control, data movement, etc.) are free.

Cost model. Number of compares.

Q. Realistic model?
A1. Yes. Java, Python, C++, ...

sort (* key=None, reverse=False)

This method sorts the list in place, using only < comparisons between items.

Exceptions are not suppressed - if any comparison operations fail, the entire

sort operation will fail (and the list will likely be left in a partially modified
state).
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Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.
* Can access the elements only through pairwise comparisons.
* All other operations (control, data movement, etc.) are free.

Cost model. Number of compares.
Q. Realistic model?

A1. Yes. Java, Python, C++, ...
A2. Yes. Mergesort, insertion sort, quicksort, heapsort, ...
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Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.
* Can access the elements only through pairwise comparisons.
* All other operations (control, data movement, etc.) are free.

Cost model. Number of compares.

Q. Realistic model?

A1. Yes. Java, Python, C++, ...

A2. Yes. Mergesort, insertion sort, quicksort, heapsort, ...
A3. No. Bucket sort, radix sorts, ...

37



Comparison tree (for 3 distinct keys a, b, and ¢)
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code between compares

(e.g., sequence of exchanges)
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code between compares

(e.g., sequence of exchanges)
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Comparison tree (for 3 distinct keys a, b, and ¢)

a<b

code between compares

(e.g., sequence of exchanges)

b<c

yes

abc J q<C

yes no
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Comparison tree (for 3 distinct keys a, b, and ¢)

a<b

code between compares

(e.g., sequence of exchanges)

b<c a<c

yes no yes

abc a<cC bac

yes no

acb cab
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Comparison tree (for 3 distinct keys a, b, and ¢)

a<b

code between compares

(e.g., sequence of exchanges)

b<c a<c

yes no yes

abc a<cC bac

yes no yes

acb cab

b<c
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Comparison tree (for 3 distinct keys a, b, and ¢)

code between compares

(e.g., sequence of exchanges)

b<c a<c

yes

no yes

a<c

yes

yes

b<c

38



Comparison tree (for 3 distinct keys a, b, and ¢)

code between compares

' e g., sequence of exchanges)
w ™

yes A\ \ yes no h
a<c bac J b<c
N \
| yes no yes no
ach j cab J bca J cba J
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Sorting lower bound

\

N

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.
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Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [ information theoretic ]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height / of pruned comparison tree.
* Binary tree of height 4 has < 2" leaves.
* n! different orderings = n! reachable leaves.

n! reachable leaves < 2" leaves
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Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [ information theoretic ]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height / of pruned comparison tree.
* Binary tree of height 4 has < 2" leaves.
* n! different orderings = n! reachable leaves.

2" > #reachable leaves = n !
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Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [ information theoretic ]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height / of pruned comparison tree.
* Binary tree of height 4 has < 2" leaves.
* n! different orderings = n! reachable leaves.

2" > #reachable leaves = n !

= h > log:(n!)
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Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [ information theoretic ]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height / of pruned comparison tree.
* Binary tree of height 4 has < 2" leaves.
* n! different orderings = n! reachable leaves.

2" > #reachable leaves = n !
— h = log (n))

>nloggn—n/In2 =

T

Stirling’s formula
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Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case. L<j&

Pf. [ information theoretic ]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height / of pruned comparison tree.
* Binary tree of height 4 has < 2" leaves.
* n! different orderings = n! reachable leaves.

2" > #reachable leaves = n !
— h = log (n))

>nloggn—n/In2 =

T

Stirling’s formula

Note. Lower bound can be extended to include randomized algorithms.
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Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.

* Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
* Myrank: 1,2,...,n.

e lclol e
1 2 3 4 )
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Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.

* Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
* Myrank: 1,2,...,n.

* Yourrank: ay,a,, ..., a,.

e lclol e
1 2 3 4 )

1 3 4 2 5
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Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.

* Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
* Myrank: 1,2,...,n.

* Yourrank: ag,a,, ..., a,.

* Songs i and are inverted if i < j, buta; > a;

AlEclolE
2 3 4 5
I\
4 5
s: 3-2,4-2

R
B e
2 inversi
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