Plan for today

quiz

discuss quiz

two more divide and conquer algorithms

Md af

- (b) Now consider some new, large-size instance of the problem, with an even n. Suppose that you query for the $n/2^{\text{th}}$ value in database 1 and find that it is \$34000, and you query for the $n/2^{\text{th}}$ value in database 2 and find that it is \$46000. What do you know about the median of the combined lists? Circle one:
 - The median of the combined lists is in the first half of database 1 and the first half of database 2.
 - The median of the combined lists is in the first half of database 1 and the second half of database 2.
 - The median of the combined lists is in the second half of database 1 and the first half of database 2.
 - The median of the combined lists is in the second half of database 1 and the second half of database 2.

Overall Median (DB1, DB2, n): m, = query (DBI, 11/2) mz = avery (DB2, 11/2) if m, 7 mz: Overall Median (Rhalf of DBI, n/2) Overall Median (Rhalf of DB1, 1/2) Matis T(n), # queries 7 T(n) = T(1/2)+2 2. (8 points) Consider the recursion tree below, which represents the recursive calls (each node) and size of the input to the recursive calls (text inside each node).

f(n)=n, # comps at LO, L1, L2, L3

Music site tries to match your song preferences with others.

Music site tries to match your song preferences with others.

You rank n songs.

Music site tries to match your song preferences with others.

- You rank *n* songs.
- Music site consults database to find people with similar tastes.

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

• My rank: 1, 2, ..., n.

	А	В	С	D	E
me	1	2	3	4	5

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_1, a_2, ..., a_n$.

	Α	В	С	D	E
me	1	2	3	4	5
you	1	3	4 (2) 5

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_1, a_2, ..., a_n$.
- Songs i and j are inverted if i < j, but $a_i > a_j$.

2 inversions: 3-2, 4-2

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_1, a_2, ..., a_n$.
- Songs i and j are inverted if i < j, but $a_i > a_j$.

With your table:

In a list of length n, what is the minimum number of inversions? How about the maximum?

Give a $O(n^2)$ algorithm to count the number of inversions in a length n list.

• Divide: separate list into two halves *A* and *B*.

input

1	5	4	8	10	2	6	9	3	7

- Divide: separate list into two halves *A* and *B*.
- Conquer: recursively count inversions in each list.

input

count inversions in left half A

count inversions in right half B

- Divide: separate list into two halves *A* and *B*.
- Conquer: recursively count inversions in each list.
- Combine: count inversions (a, b) with $a \in A$ and $b \in B$.

input

	1	5	4	8	10	2	6	9	3	7
--	---	---	---	---	----	---	---	---	---	---

count inversions in left half A

count inversions in right half B

count inversions (a, b) with $a \in A$ and $b \in B$

- Divide: separate list into two halves *A* and *B*.
- Conquer: recursively count inversions in each list.
- Combine: count inversions (a, b) with $a \in A$ and $b \in B$.
- Return sum of three counts.

input

count inversions in left half A

count inversions in right half B

count inversions (a, b) with $a \in A$ and $b \in B$

1	5	4	8	10		2	6	9	3	7
---	---	---	---	----	--	---	---	---	---	---

- Divide: separate list into two halves *A* and *B*.
- Conquer: recursively count inversions in each list.
- Combine: count inversions (a, b) with $a \in A$ and $b \in B$.
- Return sum of three counts.

input

count inversions in left half A

count inversions in right half B

count inversions (a, b) with $a \in A$ and $b \in B$

4-2 4-3 5-2 5-3 8-2 8-3 8-6 8-7 10-2 10-3 10-6 10-7 10-9

Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if *A* and *B* are sorted!

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if *A* and *B* are sorted!

Warmup algorithm.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if *A* and *B* are sorted!

Warmup algorithm.

• Sort *A* and *B*.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if *A* and *B* are sorted!

Warmup algorithm.

- Sort *A* and *B*.
- For each element $b \in B$,
 - binary search in A to find how elements in A are greater than b.

binary search to count inversions (a, b) with $a \in A$ and $b \in B$

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 2 and add x to inversion count

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 3 and decrement x

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 7 and decrement x

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 10 and decrement x

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 11 and add x to increment count

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 14 and decrement x

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 16 and add x to increment count

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 18 and decrement x

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

list A exhausted: copy 20

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

list A exhausted: copy 23

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

sorted list A sorted list B 3 7 10 14 18 2 11 16 20 23 5 2 1 0 0

sorted list C

inversions = 8

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

done: return 8 inversions

sorted list C

inversions = 8

Counting inversions: how to combine two subproblems?

Count inversions (a, b) with $a \in A$ and $b \in B$, assuming A and B are sorted.

Counting inversions: how to combine two subproblems?

Count inversions (a, b) with $a \in A$ and $b \in B$, assuming A and B are sorted.

- Scan A and B from left to right.
- Compare a_i and b_j .
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

count inversions (a, b) with $a \in A$ and $b \in B$

merge to form sorted list C

2	3	7	10	11			
							

Input. List *L*.

Input. List *L*.

Output. Number of inversions in L and L in sorted order.

SORT-AND-COUNT(L)

Input. List *L*.

Output. Number of inversions in L and L in sorted order.

SORT-AND-COUNT(*L*) IF (list *L* has one element) RETURN (0, L).

Input. List *L*.

Output. Number of inversions in L and L in sorted order.

SORT-AND-COUNT(L)

IF (list *L* has one element)

RETURN (0, L).

Divide the list into two halves *A* and *B*.

Input. List *L*.

SORT-AND-COUNT(
$$L$$
)

IF (list L has one element)

RETURN $(0, L)$.

Divide the list into two halves A and B .

 $(r_A, A) \leftarrow \text{SORT-AND-COUNT}(A)$.

 $\longleftarrow T(n/2)$

Input. List *L*.

SORT-AND-COUNT(
$$L$$
)

IF (list L has one element)

RETURN $(0, L)$.

Divide the list into two halves A and B .

 $(r_A, A) \leftarrow \text{SORT-AND-COUNT}(A)$.

 $(r_B, B) \leftarrow \text{SORT-AND-COUNT}(B)$.

 $\leftarrow T(n/2)$

Input. List *L*.

SORT-AND-COUNT(
$$L$$
)

IF (list L has one element)

RETURN $(0, L)$.

Divide the list into two halves A and B .

 $(r_A, A) \leftarrow \text{SORT-AND-COUNT}(A)$.

 $(r_B, B) \leftarrow \text{SORT-AND-COUNT}(B)$.

 $(r_{AB}, L) \leftarrow \text{MERGE-AND-COUNT}(A, B)$.

 $\leftarrow \Theta(n)$

Input. List *L*.

SORT-AND-COUNT(
$$L$$
)

IF (list L has one element)

RETURN $(0, L)$.

Divide the list into two halves A and B .

 $(r_A, A) \leftarrow \text{SORT-AND-COUNT}(A)$.

 $(r_B, B) \leftarrow \text{SORT-AND-COUNT}(B)$.

 $(r_{AB}, L) \leftarrow \text{MERGE-AND-COUNT}(A, B)$.

RETURN $(r_A + r_B + r_{AB}, L)$.

Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions in a permutation of size n in $O(n \log n)$ time.

Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions in a permutation of size n in $O(n \log n)$ time.

Pf. The worst-case running time T(n) satisfies the recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1 \end{cases}$$

