Plan for today

quiz
discuss quiz
dynamic programming intro

Cocke o iz or
1:50

1. (3 points) Recall that we call a pair of values a; and a; in an array a a significant
inversion if © < j and a; > 2a;. How many significant inversions does the following
array have?

2-2 (0 S'E@fﬁcam‘v‘
lf// 3" (NVCAZL LA

2. Recall the recursive factorial algorithm from the homework.
fact On)

et el =)

Return 1 —
else: — ij\(\ ’\’Q (

Return n-[fact(n -1) } 3(%"]'0\ _(_Q-fa\(-
C

Let T'(n) be the runtime of fact as a function of the input, n, where c¢ is a constant
representing the number of steps taken during a recursive call and b a constant

representing the number of steps during a non-recursive call. Then [\ @

T(n):{T(n—l),—Fc ?fn>1 In—|
b if n=1. YV NS \
call§ VI - l
(a) (5 points) Draw the recursion tree for this recurrence relation. You should labg
nodes with the input size (so n should be in the first node).

(n“\ﬁ C T \0 C{A\ @

ot

(b) (1 point per blank and 3 points for the rest of the inductive case) Fill in the n>\
following parts of a proof by induction that 7'(n) = ¢(n — 1) + b. You will need to TCn-\)+ ¢
fill in the blanks and the rest of the inductive ease. _

T(n) = b »

e A RN
Assume that for alm <n, T CW\X -

There are two cases.

If n =1, then T(ﬂ)ﬁb 8\)\— T(V\)-'C(""l)*b = C(l_l)'\'b VVVQA/IH:'\)
If n > 1, then 50_((\3‘;'0-

-—
-—

T(n) =L(< - \/ ‘}' C by definition from the recurrence

tacnnr: S UL
~((n-2Nd bt
T N-2Crlo+C

- n- C Yb
= CCV**’?

Algorithmic paradigms

Algorithmic paradigms

Greed. Process the input in some order, myopically making irrevocable decisions.

Algorithmic paradigms

Greed. Process the input in some order, myopically making irrevocable decisions.

Divide-and-conquer. Break up a problem intojndependent subproblems;

solve each subproblem; combine solutions to subproblems to form solution to

original problem. — J\ﬁ/\

Algorithmic paradigms

Greed. Process the input in some order, myopically making irrevocable decisions.

Divide-and-conquer. Break up a problem into independent subproblems;
solve each subproblem; combine solutions to subproblems to form solution to
original problem.

Dynamic programming. Break up a problem into a series of overlapping
subproblems; combine solutions to smaller subproblems to form solution to large
subproblem.

Dynamic programming history

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

Etymology.

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

Etymology.
* Dynamic programming = planning over time.

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

Etymology. Q V]H/La /]D ol WQF

Ny ogramming = planning over time.

Secretary of Defense had pathological fear of mathematical research.

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

Etymology.

* Dynamic programming = planning over time.
Secretary of Defense had pathological fear of mathematical research.
* Bellman sought a “dynamic” adjective to avoid conflict.

‘/_\

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

Weighted interval scheduling

Weighted interval scheduling

* Job j starts at s;, finishes at f;, and has weight w; > 0.

> time

Weighted interval scheduling

* Job j starts at s;, finishes at f;, and has weight w; > 0.

> time

Weighted interval scheduling

* Job j starts at s;, finishes at f;, and has weight w; > 0.
* Two jobs are compatible if they don’t overlap.

Ji

> time

Weighted interval scheduling

* Job j starts at s;, finishes at f;, and has weight w; > 0.
* Two jobs are compatible if they don’t overlap.

* Goal: find max-weight subset of mutually compatible jobs.

Ji

11

>

time

Earliest-finish-time first algorithm

Earliest finish-time first.
* Consider jobs in ascending order of finish time.
* Add job to subset if it is compatible with previously chosen jobs.

Earliest-finish-time first algorithm

Earliest finish-time first.
* Consider jobs in ascending order of finish time.
* Add job to subset if it is compatible with previously chosen jobs.

Recall. Greedy algorithm is correct if all weights are 1.

Earliest-finish-time first algorithm

Earliest finish-time first.
* Consider jobs in ascending order of finish time.
* Add job to subset if it is compatible with previously chosen jobs.

Recall. Greedy algorithm is correct if all weights are 1.

Observation. Greedy algorithm fails spectacularly for weighted version.

weight = 999

weight = 1

eight = 1
/ng

)) > time

Weighted interval scheduling

Weighted interval scheduling

Convention. Jobs are in ascending order of finishtime: f, < f, <...<f,.

> time

Weighted interval scheduling

Convention. Jobs are in ascending order of finishtime: f, < f, <...<f,.

ng =0 i(ﬂz@ QCO’/O

ef p(j) = large

t index i < j such that job i is compatible with ;.

S0 0S W(lﬁlmtfnno%
’\VLL@VUOL\W\O#

time

Dynamic programming: binary choice

Dynamic programming: binary choice

Def. OPT(j) = max weight of any subset of mutually compatible jobs for subproblem
consisting only of jobs 1, 2, ..., /.

Dynamic programming: binary choice

Def. OPT(j) = max weight of any subset of mutually compatible jobs for subproblem

consisting only of jobs 1, 2, ..., /.
Goal. OPT(n) = max weight of any subset of mutually compatible jobs.
(ase L DP%KJX AdeS T W))

l
- N MV\AC/\\ SoluP DN most Ve on TRy
os Gy

J
(st 2 HPHCy) does st 122
//?*’M
- e W -
C ‘ ‘ 87 (3)+ P(p”’))
Cawnw+ use \V\VSTV\PO\/D\OL@/X S ?) / Wﬁaﬂbﬁg

‘ ~ \ : i
— no\ ma Sslubon vsina repma
\ CQ/QJ %‘j\@g \) /L/ wr PCJ,) ' % CéL 7

a;g)\&?ﬁ')ﬁbg dozitz,z;%ja\b)‘

MMQDPTC)—\W)\/\)5 + CDPYC\)()'\SB)'>c
O@“D] Z 8 P

Dynamic programming: binary choice

Def. OPT(j) = max weight of any subset of mutually compatible jobs for subproblem

consisting only of jobs 1, 2, ..., /.

Goal. OPT(n) = max weight of any subset of mutually compatible jobs.

Dynamic programming: binary choice

Dynamic programming: binary choice

0 if j =0

OPT<]) — { maX{OPT(j_1)7 w]—I—OPT(p(]))} if 7 >0

> time

Weighted interval scheduling: brute force

Weighted interval scheduling: brute force

BRUTE-FORCE (11, S1, «..y Suy fl1s «ovs fus W1y oooy Wh)

Sort jobs by finish time and renumber so that fi < f>

Compute p[l1], p[2], ..., pln].
RETURN COMPUTE-OPT(n).

IA

IA

Weighted interval scheduling: brute force

BRUTE-FORCE (11, S1, «..y Suy fl1s «ovs fus W1y oooy Wh)

Sort jobs by finish time and renumber so that fi < f>

IA
IA
o

Compute p[l1], p[2], ..., pln].
RETURN COMPUTE-OPT(n).

COMPUTE-OPT(j)

IF (j =0)
RETURN 0.

ELSE

RETURN max {COMPUTE-OPT(j—1), w; + COMPUTE-OPT(p[j]) }.
=

%S%

