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Algorithmic paradigms

Greed.  Process the input in some order, myopically making irrevocable decisions. 

Divide-and-conquer.  Break up a problem into independent subproblems; 
solve each subproblem; combine solutions to subproblems to form solution to 
original problem. 
 
Dynamic programming.  Break up a problem into a series of overlapping 
subproblems; combine solutions to smaller subproblems to form solution to large 
subproblem.
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Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.
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THE THEORY OF DYNAMIC PROGRAMMING 
RICHARD BELLMAN 

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical 
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming. 

To begin with, the theory was created to treat the mathematical 
problems arising from the study of various multi-stage decision 
processes, which may roughly be described in the following way: We 
have a physical system whose state at any time / is determined by a 
set of quantities which we call state parameters, or state variables. 
At certain times, which may be prescribed in advance, or which may 
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are 
equivalent to transformations of the state variables, the choice of a 
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of 
future ones, with the purpose of the whole process that of maximizing 
some function of the parameters describing the final state. 

Examples of processes fitting this loose description are furnished 
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical 
clinic ; from the determination of long-term investment programs for 
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for 
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments. 

I t is abundantly clear from the very brief description of possible 
applications tha t the problems arising from the study of these 
processes are problems of the future as well as of the immediate 
present. 

Turning to a more precise discussion, let us introduce a small 
amount of terminology. A sequence of decisions will be called a 
policy, and a policy which is most advantageous according to some 
preassigned criterion will be called an optimal policy. 

The classical approach to the mathematical problems arising from 
the processes described above is to consider the set of all possible 

An address delivered before the Summer Meeting of the Society in Laramie on 
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954. 
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Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.
 
Etymology.
独Dynamic programming = planning over time.
独Secretary of Defense had pathological fear of mathematical research.
独Bellman sought a “dynamic” adjective to avoid conflict.
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独Job j starts at sj, finishes at fj, and has weight wj  > 0.
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Weighted interval scheduling

独Job j starts at sj, finishes at fj, and has weight wj  > 0.
独Two jobs are compatible if they don’t overlap.
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Weighted interval scheduling

独Job j starts at sj, finishes at fj, and has weight wj  > 0.
独Two jobs are compatible if they don’t overlap.
独Goal:  find max-weight subset of mutually compatible jobs.
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Earliest-finish-time first algorithm

Earliest finish-time first.
独Consider jobs in ascending order of finish time.
独Add job to subset if it is compatible with previously chosen jobs.
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Recall.  Greedy algorithm is correct if all weights are 1.
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Earliest-finish-time first algorithm

Earliest finish-time first.
独Consider jobs in ascending order of finish time.
独Add job to subset if it is compatible with previously chosen jobs.
 
Recall.  Greedy algorithm is correct if all weights are 1.
 
 
Observation.  Greedy algorithm fails spectacularly for weighted version.
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Weighted interval scheduling

Convention.  Jobs are in ascending order of finish time:  f1  ≤  f2  ≤ . . . ≤ fn .
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Weighted interval scheduling

Convention.  Jobs are in ascending order of finish time:  f1  ≤  f2  ≤ . . . ≤ fn .
 
Def.  p( j) = largest index i <  j such that job i is compatible with j.

6

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5
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Dynamic programming:  binary choice

Def.  OPT( j) = max weight of any subset of mutually compatible jobs for subproblem 
consisting only of jobs 1, 2, ..., j.
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Dynamic programming:  binary choice

Def.  OPT( j) = max weight of any subset of mutually compatible jobs for subproblem 
consisting only of jobs 1, 2, ..., j.
 
Goal.  OPT(n) = max weight of any subset of mutually compatible jobs.
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-theoptimal solution
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,
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-

Lase2 opt(j)
does select job j

.

· we get wi -- I

-can't use incompatible jobs p(j) + 1 , p(j)
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- include optimal solution using remaining compatible
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Dynamic programming:  binary choice
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OPT (j) =

�
0 B7 j = 0

max {OPT (j � 1), wj + OPT (p(j)) } B7 j > 0
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BRUTE-FORCE (n, s1, …, sn, f1, …, fn, w1, …, wn)                          
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Sort jobs by finish time and renumber so that  f1  ≤   f2   ≤  …  ≤   fn.

Compute  p[1], p[2], …, p[n].

RETURN  COMPUTE-OPT(n).



Weighted interval scheduling:  brute force
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BRUTE-FORCE (n, s1, …, sn, f1, …, fn, w1, …, wn)                          


Sort jobs by finish time and renumber so that  f1  ≤   f2   ≤  …  ≤   fn.

Compute  p[1], p[2], …, p[n].

RETURN  COMPUTE-OPT(n).

COMPUTE-OPT( j )                          


IF (j = 0)

RETURN  0.

ELSE

RETURN  max {COMPUTE-OPT( j – 1),  wj  + COMPUTE-OPT(p[ j ])  }.

> >
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