
Plan for today

quiz
discuss quiz
dynamic programming intro

 1

Back from quiz at

9 : 50

12 - 2

12- 4

12 - 3 ↳ significant
inversions

12-5

9 - 4

9 - 3

fact(n) :
total = 1

for i = 1 toi = n :
D total = total .

i

⑪
-

recursive

(n -1)c + b
= T(n) IfI
-

n>

nx) .

-

T(n) =ST
-

+ (m) = c(m - 1) + b

T(n) =b .

But T(n) = ((n - 1) + b = < (1 - 1) + b menu= 1,
soT(l) = b .

T(n -11 + C

=<((n - 1) - 1) + b + c by It , since n -1

= ((n - 2) + b + c

= (n - 2C + b+ 2

= (n - 2 + b

=(n - 1) + b

Algorithmic paradigms

2

Algorithmic paradigms

Greed. Process the input in some order, myopically making irrevocable decisions. 

2

Algorithmic paradigms

Greed. Process the input in some order, myopically making irrevocable decisions. 

Divide-and-conquer. Break up a problem into independent subproblems; 
solve each subproblem; combine solutions to subproblems to form solution to
original problem.

2

-

#

Algorithmic paradigms

Greed. Process the input in some order, myopically making irrevocable decisions. 

Divide-and-conquer. Break up a problem into independent subproblems; 
solve each subproblem; combine solutions to subproblems to form solution to
original problem.
 
Dynamic programming. Break up a problem into a series of overlapping
subproblems; combine solutions to smaller subproblems to form solution to large
subproblem.

2

Dynamic programming history

3

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

3

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time / is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic ; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

I t is abundantly clear from the very brief description of possible
applications tha t the problems arising from the study of these
processes are problems of the future as well as of the immediate
present.

Turning to a more precise discussion, let us introduce a small
amount of terminology. A sequence of decisions will be called a
policy, and a policy which is most advantageous according to some
preassigned criterion will be called an optimal policy.

The classical approach to the mathematical problems arising from
the processes described above is to consider the set of all possible

An address delivered before the Summer Meeting of the Society in Laramie on
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954.

503

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.
 
Etymology.

3

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time / is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic ; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

I t is abundantly clear from the very brief description of possible
applications tha t the problems arising from the study of these
processes are problems of the future as well as of the immediate
present.

Turning to a more precise discussion, let us introduce a small
amount of terminology. A sequence of decisions will be called a
policy, and a policy which is most advantageous according to some
preassigned criterion will be called an optimal policy.

The classical approach to the mathematical problems arising from
the processes described above is to consider the set of all possible

An address delivered before the Summer Meeting of the Society in Laramie on
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954.

503

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.
 
Etymology.
独Dynamic programming = planning over time.

3

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time / is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic ; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

I t is abundantly clear from the very brief description of possible
applications tha t the problems arising from the study of these
processes are problems of the future as well as of the immediate
present.

Turning to a more precise discussion, let us introduce a small
amount of terminology. A sequence of decisions will be called a
policy, and a policy which is most advantageous according to some
preassigned criterion will be called an optimal policy.

The classical approach to the mathematical problems arising from
the processes described above is to consider the set of all possible

An address delivered before the Summer Meeting of the Society in Laramie on
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954.

503

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.
 
Etymology.
独Dynamic programming = planning over time.
独Secretary of Defense had pathological fear of mathematical research.

3

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time / is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic ; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

I t is abundantly clear from the very brief description of possible
applications tha t the problems arising from the study of these
processes are problems of the future as well as of the immediate
present.

Turning to a more precise discussion, let us introduce a small
amount of terminology. A sequence of decisions will be called a
policy, and a policy which is most advantageous according to some
preassigned criterion will be called an optimal policy.

The classical approach to the mathematical problems arising from
the processes described above is to consider the set of all possible

An address delivered before the Summer Meeting of the Society in Laramie on
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954.

503

- planning/problem solving
oo

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.
 
Etymology.
独Dynamic programming = planning over time.
独Secretary of Defense had pathological fear of mathematical research.
独Bellman sought a “dynamic” adjective to avoid conflict.

3

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time / is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic ; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

I t is abundantly clear from the very brief description of possible
applications tha t the problems arising from the study of these
processes are problems of the future as well as of the immediate
present.

Turning to a more precise discussion, let us introduce a small
amount of terminology. A sequence of decisions will be called a
policy, and a policy which is most advantageous according to some
preassigned criterion will be called an optimal policy.

The classical approach to the mathematical problems arising from
the processes described above is to consider the set of all possible

An address delivered before the Summer Meeting of the Society in Laramie on
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954.

503

-

Weighted interval scheduling

4

Weighted interval scheduling

独Job j starts at sj, finishes at fj, and has weight wj > 0.

4

time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10 11

sj fj

Weighted interval scheduling

独Job j starts at sj, finishes at fj, and has weight wj > 0.

4

time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10 11

sj fjwj

Weighted interval scheduling

独Job j starts at sj, finishes at fj, and has weight wj > 0.
独Two jobs are compatible if they don’t overlap.

4

time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10 11

sj fjwj

Weighted interval scheduling

独Job j starts at sj, finishes at fj, and has weight wj > 0.
独Two jobs are compatible if they don’t overlap.
独Goal: find max-weight subset of mutually compatible jobs.

4

time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10 11

sj fjwj

Earliest-finish-time first algorithm

Earliest finish-time first.
独Consider jobs in ascending order of finish time.
独Add job to subset if it is compatible with previously chosen jobs.

5

Earliest-finish-time first algorithm

Earliest finish-time first.
独Consider jobs in ascending order of finish time.
独Add job to subset if it is compatible with previously chosen jobs.
 
Recall. Greedy algorithm is correct if all weights are 1.

5

Earliest-finish-time first algorithm

Earliest finish-time first.
独Consider jobs in ascending order of finish time.
独Add job to subset if it is compatible with previously chosen jobs.
 
Recall. Greedy algorithm is correct if all weights are 1.
 
 
Observation. Greedy algorithm fails spectacularly for weighted version.

5

weight = 999

weight = 1

time
0 1 2 3 4 5 6 7 8 9 10 11

b

a
h

weight = 1

599
opt

=

greedy
: 2

-
D
#

Weighted interval scheduling

6

Weighted interval scheduling

Convention. Jobs are in ascending order of finish time: f1 ≤ f2 ≤ . . . ≤ fn .

6

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Weighted interval scheduling

Convention. Jobs are in ascending order of finish time: f1 ≤ f2 ≤ . . . ≤ fn .
 
Def. p(j) = largest index i < j such that job i is compatible with j.

6

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

p(z) =0 p() = 0 p()= 0
=

p(8)E
-> i is the rightmost

* interval that ends

P
(7) before ; begins .

I P(8) + 1# -

= 6

& (

T 8-1

ALL(11)

Dynamic programming: binary choice

7

Dynamic programming: binary choice

Def. OPT(j) = max weight of any subset of mutually compatible jobs for subproblem
consisting only of jobs 1, 2, ..., j.

7

-

Dynamic programming: binary choice

Def. OPT(j) = max weight of any subset of mutually compatible jobs for subproblem
consisting only of jobs 1, 2, ..., j.
 
Goal. OPT(n) = max weight of any subset of mutually compatible jobs.

7

Case 1 Opt (i) does not
select job ;

-theoptimal solution
must use only

jobs 1
,
2, ..., j
-

Lase2 opt(j)
does select job j

.

· we get wi -- I

-can't use incompatible jobs p(j) + 1 , p(j)
+ 2, ...

- include optimal solution using remaining compatible
· ops - , 2, ..., pdj) .

I

So doselect jobj

↓

max(OPT(j-1) , wi + Opt(p(i))) jo
opt(j) = E 8 j = 0

Dynamic programming: binary choice

Def. OPT(j) = max weight of any subset of mutually compatible jobs for subproblem
consisting only of jobs 1, 2, ..., j.
 
Goal. OPT(n) = max weight of any subset of mutually compatible jobs.

7

Dynamic programming: binary choice

8

Dynamic programming: binary choice

8

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

OPT (j) =

�
0 B7 j = 0

max {OPT (j � 1), wj + OPT (p(j)) } B7 j > 0
<latexit sha1_base64="qEOy02oDztIDL8rE3HZJCxx6JUo=">AAACxnicbVHbattAEF0pvaTuzUkf+zLUtMQ0NVJSaIpJCfSlfaoLcRPwCrNajex1Viuxu2pshKE/0g/r33Sl6KG2O7BwODN7ZuZMXEhhbBD88fy9e/cfPNx/1Hn85Omz592Dwx8mLzXHMc9lrq9jZlAKhWMrrMTrQiPLYolX8c3nOn/1E7URubq0qwKjjM2USAVn1lHT7u9vo8ujRR/o8JwOOzTGmVAVd4Jm3aHDAN4Atbi0UIFIYQ0LOIcAKJ0MTjGLXAXN2BKoxNQCrYAeQ6P3LuwfO0m4nS7gbUMVrkm/zlMtZnNXvN6V/tRIdyiqpB1h2u0Fg6AJ2AVhC3qkjdH0wDukSc7LDJXlkhkzCYPCRhXTVnCJbqfSYMH4DZvhxEHFMjRR1fi4hteOSSDNtXvKQsP++6NimTGrLHaVGbNzs52ryf/lJqVNz6JKqKK0qPhdo7SUYHOojwKJ0MitXDnAuBZuVuBzphm37nQbXRrtAvnGJtWyVILnCW6x0i6tZrWL4bZnu2B8Mvg4CL+/712ctXbuk5fkFTkiIflALsgXMiJjwr09r++deKf+Vz/3S//2rtT32j8vyEb4v/4CZY/TYA==</latexit><latexit sha1_base64="qEOy02oDztIDL8rE3HZJCxx6JUo=">AAACxnicbVHbattAEF0pvaTuzUkf+zLUtMQ0NVJSaIpJCfSlfaoLcRPwCrNajex1Viuxu2pshKE/0g/r33Sl6KG2O7BwODN7ZuZMXEhhbBD88fy9e/cfPNx/1Hn85Omz592Dwx8mLzXHMc9lrq9jZlAKhWMrrMTrQiPLYolX8c3nOn/1E7URubq0qwKjjM2USAVn1lHT7u9vo8ujRR/o8JwOOzTGmVAVd4Jm3aHDAN4Atbi0UIFIYQ0LOIcAKJ0MTjGLXAXN2BKoxNQCrYAeQ6P3LuwfO0m4nS7gbUMVrkm/zlMtZnNXvN6V/tRIdyiqpB1h2u0Fg6AJ2AVhC3qkjdH0wDukSc7LDJXlkhkzCYPCRhXTVnCJbqfSYMH4DZvhxEHFMjRR1fi4hteOSSDNtXvKQsP++6NimTGrLHaVGbNzs52ryf/lJqVNz6JKqKK0qPhdo7SUYHOojwKJ0MitXDnAuBZuVuBzphm37nQbXRrtAvnGJtWyVILnCW6x0i6tZrWL4bZnu2B8Mvg4CL+/712ctXbuk5fkFTkiIflALsgXMiJjwr09r++deKf+Vz/3S//2rtT32j8vyEb4v/4CZY/TYA==</latexit><latexit sha1_base64="qEOy02oDztIDL8rE3HZJCxx6JUo=">AAACxnicbVHbattAEF0pvaTuzUkf+zLUtMQ0NVJSaIpJCfSlfaoLcRPwCrNajex1Viuxu2pshKE/0g/r33Sl6KG2O7BwODN7ZuZMXEhhbBD88fy9e/cfPNx/1Hn85Omz592Dwx8mLzXHMc9lrq9jZlAKhWMrrMTrQiPLYolX8c3nOn/1E7URubq0qwKjjM2USAVn1lHT7u9vo8ujRR/o8JwOOzTGmVAVd4Jm3aHDAN4Atbi0UIFIYQ0LOIcAKJ0MTjGLXAXN2BKoxNQCrYAeQ6P3LuwfO0m4nS7gbUMVrkm/zlMtZnNXvN6V/tRIdyiqpB1h2u0Fg6AJ2AVhC3qkjdH0wDukSc7LDJXlkhkzCYPCRhXTVnCJbqfSYMH4DZvhxEHFMjRR1fi4hteOSSDNtXvKQsP++6NimTGrLHaVGbNzs52ryf/lJqVNz6JKqKK0qPhdo7SUYHOojwKJ0MitXDnAuBZuVuBzphm37nQbXRrtAvnGJtWyVILnCW6x0i6tZrWL4bZnu2B8Mvg4CL+/712ctXbuk5fkFTkiIflALsgXMiJjwr09r++deKf+Vz/3S//2rtT32j8vyEb4v/4CZY/TYA==</latexit><latexit sha1_base64="qEOy02oDztIDL8rE3HZJCxx6JUo=">AAACxnicbVHbattAEF0pvaTuzUkf+zLUtMQ0NVJSaIpJCfSlfaoLcRPwCrNajex1Viuxu2pshKE/0g/r33Sl6KG2O7BwODN7ZuZMXEhhbBD88fy9e/cfPNx/1Hn85Omz592Dwx8mLzXHMc9lrq9jZlAKhWMrrMTrQiPLYolX8c3nOn/1E7URubq0qwKjjM2USAVn1lHT7u9vo8ujRR/o8JwOOzTGmVAVd4Jm3aHDAN4Atbi0UIFIYQ0LOIcAKJ0MTjGLXAXN2BKoxNQCrYAeQ6P3LuwfO0m4nS7gbUMVrkm/zlMtZnNXvN6V/tRIdyiqpB1h2u0Fg6AJ2AVhC3qkjdH0wDukSc7LDJXlkhkzCYPCRhXTVnCJbqfSYMH4DZvhxEHFMjRR1fi4hteOSSDNtXvKQsP++6NimTGrLHaVGbNzs52ryf/lJqVNz6JKqKK0qPhdo7SUYHOojwKJ0MitXDnAuBZuVuBzphm37nQbXRrtAvnGJtWyVILnCW6x0i6tZrWL4bZnu2B8Mvg4CL+/712ctXbuk5fkFTkiIflALsgXMiJjwr09r++deKf+Vz/3S//2rtT32j8vyEb4v/4CZY/TYA==</latexit>

Weighted interval scheduling: brute force

9

Weighted interval scheduling: brute force

9

BRUTE-FORCE (n, s1, …, sn, f1, …, fn, w1, …, wn)

Sort jobs by finish time and renumber so that f1 ≤ f2 ≤ … ≤ fn.

Compute p[1], p[2], …, p[n].

RETURN COMPUTE-OPT(n).

Weighted interval scheduling: brute force

9

BRUTE-FORCE (n, s1, …, sn, f1, …, fn, w1, …, wn)

Sort jobs by finish time and renumber so that f1 ≤ f2 ≤ … ≤ fn.

Compute p[1], p[2], …, p[n].

RETURN COMPUTE-OPT(n).

COMPUTE-OPT(j)

IF (j = 0)

RETURN 0.

ELSE

RETURN max {COMPUTE-OPT(j – 1), wj + COMPUTE-OPT(p[j]) }.

> >

j =*
-

