Agenda for today

Quiz

Talk more about independent set + activity
Computing optimal choices (not just value)

A non-recursive formulation for dynamic programming

VO shotd Lse T Jl
@PT(}

(a) (4 points) Suppos t the houses are located at (in yards) z, = 100,
z3 = 1000, jr4 = 1100, z5 = 1200, zg = 1300, and ¢, through cs are 5,8,2,12,3,7.

What is the maximum amount of candy that you can get? Which houses should

ou visit? N TC = ne O\\
75 pews < OPT(GY) RPTOY =g,

) VAYIZN a
\/\.%lki Z RN 4 CGW\a)q Vo Jvkset
C1-8B <Cy=]2 5t tLiouse § | +9)

(b) (5 points) Let OPT(j) denote the number of candy pieces that you can get using
all houses up to house j. Also, for house located at z;, let p(j) be the earlier
house that is closest to house 5 but s away. Fill in part of the

recursive definition of OPT(j) below.
a
\ 78
if =0

o YO P
OPT(J)={MM (DW(’)’\\,] C}) QP((P()»\} if j > 0.

(a) (3 points) Give an example to show that the following algorithm does not always
find an independent set of maximum total weight.

Start with S equal to the empty set

While some node remains in G:
Pick a node v; of maximum weight and add it to S
Delete v; and its neighbors from G

Return S R

\ 2 S
G—(D~)
YO | VA S @@_M

(b) (3 points) Give an example to show that the following algorithm also does not
always find an independent set of maximum total weight.

[F

Let S be the set of all v; where 7 is odd wJ e/l\ */- S

Let S5 be the set of all v; where 7 is even)

(Note that S; and S, are both independent sets) ’2
Determine which of S, and S; has greater total weight, and rdﬂptn this one W&” -I_ S 2 \

\ L

A -&)@@ LT 22

Activity

(a) Give a recurrence relation for the weight, OPT(j), of the first j nodes in an n-node path
as input to independent set. Notice that you don’t need p(j) for this problem.

(b) \oaselinge wegnt 1L
(C,\ Y7 o eVt mcﬁﬁMdW&O{

T

T()\ zmo\x(om 1y, wWyr L XP

. D\ﬂ(5

Weighted interval scheduling: finding a solution

FIND-SOLUTION()

IF j=0)
RETURN .
ELSEIF (wj + M[p[jll > M[j-1])

RETURN {j } U FIND-SOLUTION(p[/]).

ELSE

MIO]
M[1]
M[2]
M[3]
M[4]
M[5]
M[6]
M[7]
M[8]

RETURN FIND-SOLUTION(j—1).

find-solution(n)

5,:w(5)j=7 p(5)=0
E6 w(6)=3 p(6)=2
7 W(7)j=2 p(7)=2
8, w(8);6 8)=1

Can there be more than one optimal set of intervals?

FIND-SOLUTION()

IF j=0)
RETURN .
ELSEIF (w; + M[pljll > M[j-1])
RETURN {j } U FIND-SOLUTION(p[/]).
ELSE

RETURN FIND-SOLUTION(j—1).

1.Yes
2. No

Can there be more than one optimal set of intervals?

FIND-SOLUTION()

IF j=0)
RETURN .
ELSEIF (w; + M[pljll > M[j-1])
RETURN {j } U FIND-SOLUTION(p[/]).
ELSE

RETURN FIND-SOLUTION(j—1).

1.Yes
2. No

With table: which one does this algorithm find?

Weighted interval scheduling: bottom-up dynamic programming

BOTTOM-UP(7, S1, ..y Snsfly oees fris Wiy evvy Wh)

Sort jobs by finish time and renumber so that fi < f>

Compute p[l], p[2], ..., pl[n].
M[0] < 0.

FORj=1TOn

M[0] = 0
M[1] =
M[2] =
M[3] =
M[4] =
M[5] =
M[6] =
M[7] =
M[8] =

M[jl < max { M[j-1], w; + M[p[j]] }.

< ... < fu
1,wi=s P
2, W(2)=4 p(2)=0
3, w(3)=1 pP(3)=0
4,jw(4)_=5 p(4)=1

5,;W(5);=7 | p(5)=0
. 6wE=8 06
7,.W(7):=2 p(7)=2
8, w(8)=6 PO)=T
> 3 4 5 6 7 8 9 10 11 6

Memoization allowed us to go from O(2") to O(n)...

Can we memoize merge sort?

mergesort(L):
L, = first half of L
L, = first half of L
sorted_L,; = mergesort (L)

sorted_L, = mergesort(L,)

return merged L; and L,

Memoization allowed us to go from O(2") to O(n)...

Can we memoize merge sort?

mergesort(L):
L, = first half of L
L, = first half of L
sorted_L,; = mergesort (L)
sorted_L, = mergesort(L,)

return merged L; and L,

No-the key was overlapping subproblems

