
Goals for today

refresh on graph notation

examples of proofs about properties of graphs

understand BFS algorithm and runtime

understand what a topological sorting is
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Undirected graphs
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Notation.  G = (V, E)

usedges

NVI = n
v = 31 ,

2
,
3 , 4 , 5 ,

6
,
7
,
8)

IE1 =M

ex : n = #verts = 8

m = 1)
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Paths and connectivity

Def.  A path in an undirected graph G = (V, E) is a sequence of nodes 
v1, v2, …, vk with the property that each consecutive pair vi–1, vi is joined  
by a different edge in E.
-

proposed path : 1
,
2

,
7 , 8 X

proposed patr
: 11

,
12

,
13

,
12

Tair
of

for every is a
Here

a graph isconnected
if nodes ,

path btwr
them

path is simple if all nodes are distinct .
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Cycles

Def.  A cycle is a path v1, v2, …, vk in which v1 = vk and k ≥ 2.

Def.  A cycle is simple if all nodes are distinct (except for v1 and vk ).

cycle C = 1-2-4-5-3-1

-
-

&
is same as simple
2 - 4 - 5- 3 - 1

-2

in tables : how many
distinct cycles in ?
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Cycles

Def.  A cycle is a path v1, v2, …, vk in which v1 = vk and k ≥ 2.

Def.  A cycle is simple if all nodes are distinct (except for v1 and vk ).

cycle C = 1-2-4-5-3-1

How many simple cycles are there in this graph?

length 3 Length 4

Z

Y
lengt j

I
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Trees

Def.  An undirected graph is a tree if it is connected and does not contain  
a cycle.

%
↑
* O

claim : in a tree,

for any pair
of nodes u

,
v

there is a unique path from
utor.

Prof : Let T be a tree .

Let u," be two nodes

from T . For the sake of contradiction , suppose

that there are two unique paths between
n and V

, p , and P2 .

Pr
But following p , and then-*P2 is a cycle , -

u

contradicting that I is atree .

P2 V



Suppose G is a tree with n nodes. How many edges does it have?

1. 

2. 

3. 

4. 

5. It depends

0
n − 1
n + 1
n2
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G

,
e ↳ connected !

& if disconnected,

· O 80
O

d ↳ 0-10

- dis
d
n = 7 m = 6



Rooted trees

Given a tree T, choose a root node r and orient each edge downward from r.

v

the parent of v

a child of v

root r

Xc5 + 1

O
Given T ,

root it at r .

identify every edge o I lode below
it.

Since there is only one path btwn every pair
of

nodes
,
no node can have more than one edge

entering from above.
The root has no edge above . Every other node
has exactly one edge above. n edges .
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Connectivity

s-t connectivity problem.  Given two nodes s and t, is there a path between  
s and t ?

s-t shortest path problem.  Given two nodes s and t, what is the length of 
a shortest path between s and t ?

&
Hedges BFS
if no path , up

Given n
, howgrap ? Ericking ?-> how to answer connectivity

- how to answer shortest path ?
howgerichty
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Breadth-first search

BFS intuition.  Explore outward from s in all possible directions, adding nodes one 
“layer” at a time.

s L1 L2 Ln–1Of
Layers
Lo = Es]

4 = all nodes connected
to s

L2 = all nodes connected to nodes
in t

: excepts nodes in Li-1
but

Li = all nodes connected
to

not in any previous layer
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Breadth-first search

Example

L0

L1

L2

L3

Lo = 51

dist from 1

to 8

L = 32 , 23
L2

↳3

=
O



A helpful property of the BFS output

Property. Let T be a BFS tree of G = (V, 
E), and let (x, y) be an edge of G.  Then, 
the level of x and y differ by at most 1.
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Proof : cases
-

LaseI BFS adds X first
.

Las2 BFS adds y first

at

case 2 BFS adds X , y same
time

-



BFS pseudocode

Say we’re interested in some specific node v and our graph is connected.
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- connected

a

Set all nodes' layer to null , except
ss layer to 0.
L = 0 current layer
While there is some

node with a hull lager :

Mark all nodes that have a
null layer

and are adjacent to a mode
in L with

L+ null

o Bull
L = L + 1

L2

How can I adapt thiscode to answer ?connectivity



BFS runtime (connected graph)
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BFS Pseudocode:
Set all nodes’ layer to null, except set v’s to 0
Set L = 0
While there is some node with a null layer

Mark all nodes that have a null layer and are adjacent to a node in L as L + 1
set L = L + 1

01234
0-0-0-0-0

odo

Oln2)

idea #18(n2)
Mow

many
times does the loop

run ? n

- now much time does the loop

idea #2
take ? M

- q(m + n)
- we only look a an edge

one

- make an argument that we only need constantops per edge


