g\ou/k Ao~ %Mﬂ
_ J(opo(bil Ccad o\rducxri\/\os OA%M\&V\V‘/\

~ G E & brealc

_ 6(%&@ O\ CSM A S

Back to topo sort... ?YD@L (/\{/\ (\AMULW
| U

Let G be an arbitrary DAG.
Assume that all DAGs with fewer nodes than G have topological orderings. (IH)

Case 1: G has one node. G has a topological ordering. /

Case 2. G hasn>1.

There exists a node with no entering edges. Remove this node to form G’. Notice that G’
{is a DAG with fewer nodes than G, so by our inductive hypothesis, G’ has aTopoIogicaI ,
ordering vy, V,, ..., V,. Since the node we removed has no incoming edges, we can add it

to this topological ordering in the first position.

So G has a topological ordering. Because G was an arbitrary DAG, all DAGs have
topological orderings.

DAG

&

Back to topo sort...

Let G be an arbitrary DAG.
Assume that all DAGs with fewer nodes than G have topological orderings. (IH)

Case 1: G has one node. G has a topological ordering.

Case 2. Ghasn>1.

There exists a node with no entering edges. Remove this node to form G’. Notice that G’
iIs a DAG with fewer nodes than G, so by our inductive hypothesis, G’ has a topological
ordering vy, V5, ..., V. Since the node we removed has no incoming edges, we can add it
to this topological ordering in the first position.

So G has a topological ordering. Because G was an arbitrary DAG, all DAGs have
| |

6 6 O gl
A

What'’s the algorithm?

topological orderings.

oiden =1 2§

Back to topo sort...

Let G be an arbitrary DAG.
Assume that all DAGs with fewer nodes than G have topological orderings. (IH)

Case 1: G has one node. G has a topological ordering. %@

Case 2. G hasn>1.

There exists a node with no entering edges. Remove this node to form G’. Notice that G’
iIs a DAG with fewer nodes than G, so by our inductive hypothesis, G’ has a topological
ordering vy, V5, ..., V. Since the node we removed has no incoming edges, we can add it
to this topological ordering in the first position.

So G has a topological ordering. Because G was an arbitrary DAG, all DAGs have
tOpOngical nriarinnec

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first DAG

Delete v from G
Recursively (compute a topological ordering of G—{v} N%I{f
and append this order after v 2

0

%

What's the runtime? O— O

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first V)'<Lﬂf(\ (M_Q’)

Delete v from G l

Recursively compute a topological ordering of G—{v} —Vvt.

and append this order after v

N+ n-1 fn- et

= 1 e pnesire Calls (ovu_ ¢ Q/Q‘ﬁ/\/\/a
o d L Q}(LQer M AvSE e we e
— oUl LA n recuNSIve el W a2 O\

% @ﬂé\ \l \J\)/m’o Loy VA Qdi‘?és—
CUnpme (S Jpper bovndedlou n

D(m \ oN'N7 e 10&% ECn \

21

Topological sorting algorithm: running time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.
* Maintain the following information:
- count(w) = remaining number of incoming edges

g set of remaining nodes with no incoming edges
* Initialization: O(m + n) via single sC :

* Update: to delete v
- remove v from S
- decrement count(w) for all edges from v to w;

G’h’dﬁld wto S if COMW

- thisis O(I) peredge =

22

