Plan for today : topological ordering algorithm quiz ⁺ break -greedy algorithms directed acydic Last time: St time: directed acyclic
St time: I fragh it has a
If G is a DAG, they ppological order.

Back to topo sort… proof by induction

Let G be an arbitrary DAG.

Assume that all DAGs with fewer nodes than G have topological orderings. (IH)
Case 1: G has one node. G has a topological ordering.

Case 1: G has one node. G has a topological ordering.

Case 2. G has $n > 1$.

There exists a node with no entering edges. Remove this node to form G'. Notice that G' is a DAG with fewer nodes than G, so by our inductive hypothesis, G' has a topological ordering $v_1, v_2, ..., v_n$. Since the node we removed has no incoming edges, we can add it to this topological ordering in the first position. **Back to topo sort...** $\triangleright \triangleright \triangleright \bigcirc \biguparrow$
Let G be an arbitrary DAG.
Assume that all DAGs with fewer node
Case 1: G has one node. G has a tope
Case 2. G has n > 1.
There exists a node with no entering \bigcirc
is a DAG wi (IH)
Notice that G
a topological
we can add

So G has a topological ordering. Because G was an arbitrary DAG, all DAGs have topological orderings.

18 **DAG** v O

Let G be an arbitrary DAG.

Assume that all DAGs with fewer nodes than G have topological orderings. (IH)

Case 1: G has one node. G has a topological ordering.

Case 2. G has $n > 1$.

There exists a node with no entering edges. Remove this node to form G'. Notice that G' is a DAG with fewer nodes than G, so by our inductive hypothesis, G' has a topological ordering $v_1, v_2, ..., v_n$. Since the node we removed has no incoming edges, we can add it to this topological ordering in the first position.

So G has a topological ordering. Because G was an arbitrary DAG, all DAGs have topological orderings. $G = \frac{1}{\sqrt{2\pi}} \int_{0}^{1}$... graph $W/2$

What's the algorithm?

$\frac{125}{125}$

Back to topo sort…

Let G be an arbitrary DAG.

Assume that all DAGs with fewer nodes than G have topological orderings. (IH)

Case 1: G has one node. G has a topological ordering.

S. (IH)
3

Case 2. G has $n > 1$.

There exists a node with no entering edges. Remove this node to form G'. Notice that G' is a DAG with fewer nodes than G, so by our inductive hypothesis, G' has a topological ordering $v_1, v_2, ..., v_n$. Since the node we removed has no incoming edges, we can add it to this topological ordering in the first position.

So G has a topological ordering. Because G was an arbitrary DAG, all DAGs have topological orderings

What's the runtime?

 $\mathcal{Q}_{\mathcal{P}}$ $O \rightarrow$

To compute a topological ordering of G : Find a node v with no incoming edges and order it first Delete v from G Recursively compute a topological ordering of $G - \{v\}$ and append this order after v

n - (n - 1)(n - 2) - $=$ v $|$

Naive upper bound : n ⁺ n- ¹ ⁺ n - 2 +... = n-1 recursive calls (one for eveny node except the first one we remove = at each recursive call, we need to find V w/ no incoming edges runtime is upper bounded by ⁿ . Maire upper bound:
- n-1 recursive calls (one for every
node exapt the first one we remove
- at each recursive call, we need
b find I w/no incoming edges-
Mitime is upper bounded by n.

Topological sorting algorithm: running time

Theorem. Algorithm finds a topological order in $O(m + n)$ time. Pf. **Topological sorting algorithm:** running time

Theorem. Algorithm finds a topological order in $O(m + n)$ time

Pf.

• Maintain the following information:

• count(w) = remaining number of incoming edges

• S = set of remain **broad solution** and **contrined and algorithm:** runned and the following information:

Maintain the following information:

<u>Count(w)</u> = remaining number of inconsider the solution:

Sense of remaining nodes with no initi

- Maintain the following information:
	- $count(w)$ = remaining number of incoming edges
	- *S* = set of remaining nodes with no incoming edges
- Initialization: $O(m + n)$ via single scan through graph.
- Update: to delete *v*
	- remove *v* from *S*
	- decrement *count*(*w*) for all edges from *v* to *w*;

and add *w* to *S* if *count*(*w*) hits 0

 $-$ This is $\overline{O(1)}$ per edge

Homework Quiz
back from break (a)

