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Back to topo sort... ?YD@L (/\{/\ (\AMULW
| U

Let G be an arbitrary DAG.
Assume that all DAGs with fewer nodes than G have topological orderings. (IH)

Case 1: G has one node. G has a topological ordering. /

Case 2. G hasn>1.

There exists a node with no entering edges. Remove this node to form G’. Notice that G’
{is a DAG with fewer nodes than G, so by our inductive hypothesis, G’ has aTopoIogicaI ,
ordering vy, V,, ..., V,. Since the node we removed has no incoming edges, we can add it

to this topological ordering in the first position.

So G has a topological ordering. Because G was an arbitrary DAG, all DAGs have
topological orderings.
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Back to topo sort...

Let G be an arbitrary DAG.
Assume that all DAGs with fewer nodes than G have topological orderings. (IH)

Case 1: G has one node. G has a topological ordering.

Case 2. Ghasn>1.

There exists a node with no entering edges. Remove this node to form G’. Notice that G’
iIs a DAG with fewer nodes than G, so by our inductive hypothesis, G’ has a topological
ordering vy, V5, ..., V. Since the node we removed has no incoming edges, we can add it
to this topological ordering in the first position.

So G has a topological ordering. Because G was an arbitrary DAG, all DAGs have
| |
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What'’s the algorithm?

topological orderings.
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Back to topo sort...

Let G be an arbitrary DAG.
Assume that all DAGs with fewer nodes than G have topological orderings. (IH)

Case 1: G has one node. G has a topological ordering. %@

Case 2. G hasn>1.

There exists a node with no entering edges. Remove this node to form G’. Notice that G’
iIs a DAG with fewer nodes than G, so by our inductive hypothesis, G’ has a topological
ordering vy, V5, ..., V. Since the node we removed has no incoming edges, we can add it
to this topological ordering in the first position.

So G has a topological ordering. Because G was an arbitrary DAG, all DAGs have
tOpOngical nriarinnec

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first DAG

Delete v from G
Recursively (compute a topological ordering of G—{v} N%I{f
and append this order after v 2
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What's the runtime? O— O

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first V)'<Lﬂf(\ (M\_Q’)

Delete v from G l

Recursively compute a topological ordering of G—{v} —Vvt.

and append this order after v
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Topological sorting algorithm: running time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.
* Maintain the following information:
- count(w) = remaining number of incoming edges

g set of remaining nodes with no incoming edges
* Initialization: O(m + n) via single sC :

* Update: to delete v
- remove v from S
- decrement count(w) for all edges from v to w;

G’h’dﬁld wto S if COMW

- thisis O(I) peredge =
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