
Plan for today :

- topological ordering algorithm
- quiz + break

-greedy algorithms
directed acydic

Last time
:

If G is aDagraphithaaorder.

18

Back to topo sort…

DAG

v

Let G be an arbitrary DAG.
Assume that all DAGs with fewer nodes than G have topological orderings. (IH)

Case 1: G has one node. G has a topological ordering.

Case 2. G has n > 1.
There exists a node with no entering edges. Remove this node to form G’. Notice that G’
is a DAG with fewer nodes than G, so by our inductive hypothesis, G’ has a topological
ordering . Since the node we removed has no incoming edges, we can add it
to this topological ordering in the first position.

So G has a topological ordering. Because G was an arbitrary DAG, all DAGs have
topological orderings.

v1, v2, …, vn

proof by induction

~

-

-

O

19

Back to topo sort…

DAG

v

Let G be an arbitrary DAG.
Assume that all DAGs with fewer nodes than G have topological orderings. (IH)

Case 1: G has one node. G has a topological ordering.

Case 2. G has n > 1.
There exists a node with no entering edges. Remove this node to form G’. Notice that G’
is a DAG with fewer nodes than G, so by our inductive hypothesis, G’ has a topological
ordering . Since the node we removed has no incoming edges, we can add it
to this topological ordering in the first position.

So G has a topological ordering. Because G was an arbitrary DAG, all DAGs have
topological orderings.

v1, v2, …, vn

What’s the algorithm?

G G'G" ... graph W

ing
⑨

20

Back to topo sort…

DAG

v

Let G be an arbitrary DAG.
Assume that all DAGs with fewer nodes than G have topological orderings. (IH)

Case 1: G has one node. G has a topological ordering.

Case 2. G has n > 1.
There exists a node with no entering edges. Remove this node to form G’. Notice that G’
is a DAG with fewer nodes than G, so by our inductive hypothesis, G’ has a topological
ordering . Since the node we removed has no incoming edges, we can add it
to this topological ordering in the first position.

So G has a topological ordering. Because G was an arbitrary DAG, all DAGs have
topological orderings.

v1, v2, …, vn

order:

o

-

What’s the runtime?

21

as
07

n - (n - 1)(n - 2)
-

=u !

Naive upper bound :
n + n- 1 + n

- 2 +...

=> n-1 recursive calls (one
for every

node except the first one we remove
=> at each recursive call , we

need

to find v w/ no incoming edges
-

runtime is upper bounded by n .

O(n2) and in fact OCU).
*

22

Topological sorting algorithm: running time

Theorem. Algorithm finds a topological order in O(m + n) time.
Pf.
独Maintain the following information:

- count(w) = remaining number of incoming edges
- S = set of remaining nodes with no incoming edges
独Initialization: O(m + n) via single scan through graph.
独Update: to delete v

- remove v from S
- decrement count(w) for all edges from v to w; 

and add w to S if count(w) hits 0
- this is O(1) per edge ▪

-

-

tomennQuiea
10 : 20

