
Greedy algorithms

Build a solution greedily by making the best local decision in each step to build an 
optimal global solution.
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local - at each step , only consider
a small part of in put.

greedy - at each step , make choice
optimizing criterion , often a proxy
for the overall enterson.

examples
?

stable matching
-Gale Shapley



Single-pair shortest path problem

Problem.  Given a digraph G = (V, E), edge lengths ℓe  ≥  0, source s ∈ V, 
and destination t ∈ V, find a shortest directed path from s to t.
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Single-source shortest paths problem

Problem.  Given a digraph G = (V, E), edge lengths ℓe  ≥  0, source s ∈ V, 
find a shortest directed path from s to every node.
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Dijkstra′s algorithm (for single-source shortest paths problem)
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・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.
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