
Greedy algorithms

Build a solution greedily by making the best local decision in each step to build an
optimal global solution.

 1

local - at each step , only consider
a small part of in put.

greedy - at each step , make choice
optimizing criterion , often a proxy
for the overall enterson.

examples
?

stable matching
-Gale Shapley

Single-pair shortest path problem

Problem. Given a digraph G = (V, E), edge lengths ℓe ≥ 0, source s ∈ V, 
and destination t ∈ V, find a shortest directed path from s to t.

2

7

1 3

source s

6

8

5

7

5 4

15

312

20

13

9

destination t

0

4

5

2

6

9

4

1 11

directed graph
9+ 4 +

-

H 11 =25

8 + 6 + 13 =

=27
= 8 + 7+ 11 =26

Single-source shortest paths problem

Problem. Given a digraph G = (V, E), edge lengths ℓe ≥ 0, source s ∈ V, 
find a shortest directed path from s to every node.

3

7

1 3

source s

6

8

5

7

5 4

15

312

20

13

9

4

5

2

6

4

1 11
9

0

- Sto every node

-pairshortest patio

node o
&

Dijkstra′s algorithm (for single-source shortest paths problem)

4

s

v

u
S

d[u]
ℓe

Greedy
Maintain a set of explorednodes S

for which the algorithm
has determined

d[u] = Length of a shortest
path to
u

Addto the unexplored node vpS
&

that minimizes (v)=M (dStoe
l

l d[v]&
⑧

want

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

Dijkstra’s algorithm demo

5

4 8

3

16 2

67 5

1

d[s] 0

S s

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

->

4

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

6

0

sS

d[s]

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

6

4 8

16

0

sS

d[s]

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

6

4 8

16

0

0 + 4 = 4 0 + 8 = 8

0 + 16 = 16

sS

d[s]

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

e

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

6

4 8

16

0

0 + 4 = 4 0 + 8 = 8

0 + 16 = 16

sS

d[s]

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

7

v

0

4

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

pred[v]

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

7

v

0

4

8

3

16s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

pred[v]

d[s) =0

To
-

d[v] = 4

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

7

v

0

4

8

3

16

4 + 3 = 7
0 + 8 = 8

0 + 16 = 16

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

pred[v]

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

7

v

0

4

8

3

16

4 + 3 = 7
0 + 8 = 8

0 + 16 = 16

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

pred[v]

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

8

0

4 7

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

8

0

4 7

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

=> you do the rest
!

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

8

0

4 7

16

7

1

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e&
0 + 16 7 + 7

14

⑧

⑰ & 8
7 + 1

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

8

0

4 7

16

7

1

7 + 1 = 8

0 + 16 = 16
7 + 7 = 14

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

8

0

4 7

16

7

1

7 + 1 = 8

0 + 16 = 16
7 + 7 = 14

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

9

0

4 7 8

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

9

0

4 7 8

16

7 5 6

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

9

0

4 7 8

16

7 5 6

0 + 16 = 16
7 + 7 = 14
8 + 5 = 13 8 + 6 = 14

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

10

0

4 7 8

13

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

10

0

4 7 8

6

2

13

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

10

0

4 7 8

13 + 2 = 15
8 + 6 = 14

6

2

13

s

S

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

�(v) = min
e = (u,v) : u�S

d[u] + �e

Dijkstra’s algorithm demo

・Initialize S ← { s } and d[s] ← 0.
・Repeatedly choose unexplored node v ∉ S which minimizes 

 
 
add v to S; set d[v] ← π(v) and pred[v] ← argmin.

11

0

4 7 8

1413

s

S

�(v) = min
e = (u,v) : u�S

d[u] + �e

