Dijkstra's algorithm (for single-source shortest paths problem)

Greedy algorithm Maintain a set of explored nodes S for unich the algorithm has determined d[u]= length of shortest sou path. Step I: Initialize S= Zs}, d[s]=0. Step2: Repeatedly choose unexplored node VES mich minimizes d'O) = min (d(u) + inO:ueo (d(u) + le)2 fring C= alledges (4, V) d[u]such that is UZ (U_2, V_2) (U_3, V_3)

Trace through the algorithm with your table

ĺ		current S	current $d(u)$	all $v \notin S$ with at	values	v to add
I			values for	least one edge	of $d'(v)$	to S
		01/-	$\mu \in S$	from/S	n/	
[set up	iya	MA	1 / A	19	2
ĺ				{		
		5-5	d(s) =	\mathcal{D} , \mathcal{C} ,		\bigcirc
		753				
	while loop run 1		U	A		
Ī						
		SE a)				
		5,95				
	while loop run 2					

d'(e) = min(d(c)+1) a = min(7+1) = 8 $S = \xi s , \alpha , c$ d(s)=0 16 2 S b d(b) = min(d(s) + l(s,b), (s,b) d(c) + l(c,b) min(Q+1b), m6 7 5 8 $d(\alpha) = 4$ (C) = 7 3 a Prc,e)= current Sall $v \notin S$ with at current d(u)=14 to Svalues for least one edge of d'(v) $u \in S$ from Sset up while loop run 1 while loop run 2 e,b $S = {a, d} {d(a) = 0} {d(a) = 0} {d(a) = 1} {d(a) = 1$ e while loop run 3 while loop run 4 while loop run while loop run

Would Dijkstra still work if we didn't greedily choose the next node?

With your table, find a counterexample (incorrect d[u] labeling)

• Repeatedly choose unexplored node $v \notin S$ and add it to S with $d[v] = \min_{e=(u,v):u\in S} d[v] + \ell_e$

Dijkstra's algorithm: proof of correctness

Theorem: Every Y has quality Z.

Let x be an arbitrary Y.

Suppose that for all w less than x, quality Z holds.

There are (at least two) cases:

Case 1: non inductive case, aka base case. can prove directly that theorem holds.

(but there could be more than one of these!)

Case 2: inductive case. need to use inductive hypothesis to show that theorem

holds. (but there could be more than one of these!)

x has quality Z. Because x was an arbitrary Y, every Y has quality Z.

FlatRate

- > each w/specific star, and time
- To work for FlatRate, you sign up for a shift and are given a large set of possible jobs to complete during the shift. Some jobs take longer than others, but all pay the same. Before your shift, you select which jobs to take.
- Two jobs are compatible if they don't overlap.

FlatRate

- To work for FlatRate, you sign up for a shift and are given a large set of possible jobs to complete during the shift. Some jobs take longer than others, but all pay the same. Before your shift, you select which jobs to take.
- Two jobs are compatible if they don't overlap.
- With table: what is the highest-paying set of compatible jobs for this schedule?

Interval scheduling

- Job *j* starts at s_i and finishes at f_i .
- Two jobs are compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

idea for a greed algorithmi - choose jobs in order of shortness, fi - Si

Some local criteria that won't work...

Give a counterexample to why a greedy algorithm using each of the following local criteria would yield a global optimal solution for every input.

