A criteria that will work

Any ideg~"
EARLIEST-FINISH-TIME-FIRST (n, 81, 82, ..., Sn» f1, f2, «+., fn)

SORT jobs by finish times and renumber so that fi < > < ... < fa.
S <— 0.
FOR j=1 TO n
IF (job j is compatible with S)
S<SU{j}.

RETURN S§.
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Proof of correctness

\
ov >

Let O be an optimal set of intn)arvals and X be the set of intervals that our algorithm chooses. We want
to show that | X| = |O].

Let i, i, ..., [, be the set of requests in the order they were added to X. Note that | X | = k.
Let j;, j», ---»J,, DE the set of requests in order of start/finish time in O. Note that | O | = m.
J1J2 o m
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Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want
to show that | X| = |O]|.

Let iy, iy, ..., I} be the set of requests in the order they were added to X. Note that | X| = &.
Let j;, jo, ---» J,, D€ the set of requests in order of start/finish time in O. Note that | O | = m.

B ’&\ K= Z@/E/\% \
e J‘

O=3C,5, T4

____E )83

23



Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want
to show that | X| = |O].

=

Let iy, iy, ..., I} be the set of requests in the order they were added to X. Note that | X| = &.
Let j;, jo, ---» J,, D€ the set of requests in order of start/finish time in O. Note that | O | = m.

Let f(7) be the finishing time of job i and s(i) be the starting time of job i.
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Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want
to show that | X| = |O]|.

Let iy, iy, ..., I} be the set of requests in the order they were added to X. Note that | X| = &.
Let j;, jo, ---» J,, D€ the set of requests in order of start/finish time in O. Note that | O | = m.

Let f(i) be the finishing time of job i and s(i) be the starting time of job i.
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Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want
to show that | X| = |O]|.

Let iy, i5, ..., f)0€ the set of requests in the order they were added to X. Note that | X | = .
Let j;, j», ---» ], De the set of requests in order of start/finish time in O. Note that | O | = m.

Let f(7) be the finishing time of job i and s(i) be the starting time of job i.

Claim: for all indices r < k, we have f(i,) < f(J,).
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Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want
to show that | X| = |O]|.

Let iy, iy, ..., I} be the set of requests in the order they were added to X. Note that | X| = &
Letj;, J», ---»J,, DE the set of requests in order of start/finish time in O. Note that |O| = m

= — —

Let f(7) be the finishing time of job i and s(i) be the starting time of jOb l () (
Claim: for all indices r < k, we havef(@ < f(@)
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Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want
to show that | X| = |O]|.

Let iy, iy, ..., I} be the set of requests in the order they were added to X. Note that | X | = &.
Let j;, j», ---»J,, De the set of requests in order of start/finish time in O. Note that | O | = m.

Let f(7) be the finishing time of job i and s(i) be the starting time of job i.

Claim: for all indices r < k, we have f(i,) < f(J,).
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Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want to
show that | X| = | O].

Let ip) iy, ..., I} be the set of requests in the order they were added to X. Note that | X | = .
Let ji), j»s - --» J,,, DE the set of requests in order of start/finish time in O. Note that | O | = m.

Let f(7) be the finishing time of job i and s(i) be the starting time of job i.
Claim: for all indices r < k, we have f(i,) < f(J,).

Proof: let r < k. NSO &\f\p\-%\/{% T SAaoan o

(—/)

Assume that for all £ < r, we havif(if) < f(Jy). (WA d\ (A %M (/L% ]DD’]V\L@} ‘

There are two cases:

If r = 1, we know that f(i;) < f(Jj;) because the greedy algorithm chooses the job with earliest
finishing time first. \D o O =D 4

29



Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want to
show that | X| = | O].

Let iy, iy, ..., I} be the set of requests in the order they were added to X. Note that | X | = &.
Let j;, j», ---»J,, De the set of requests in order of start/finish time in O. Note that | O | = m.

Let f(7) be the finishing time of job i and s(i) be the starting time of job i.
Claim: for all indices r < k, we have f(i,) < f(J,).

Proof: let r < k.

Assume that for all £ < r, we hav
N

There are two cases:

If r = 1, we know that f(i;) < f(Jj;) because the greedy algorithm chooses the job with earliest
finishing time first.
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Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want to
show that | X| = | O].

Let iy, iy, ..., I} be the set of requests in the order they were added to X. Note that | X | = &.
Let j;, j», ---»J,, De the set of requests in order of start/finish time in O. Note that | O | = m.

Let f(7) be the finishing time of job i and s(i) be the starting time of job i.
Claim: for all indices r < k, we have f(i,) < f(J,).

Proof: let r < k.

Assume that for all £ < r, we have f(i,) < f(j,).

There are two cases:

If r = 1, we know that f(i;) < f(j;) because the greedy algorithm chooses the job with earliest

finishing time first. ’((C\(B - /g Q)r\

If r > 1, we know by the IH that f(i,_;) < f(J,_)-

Greedy: I iy l
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Optimal: Ji I jr_l Jr o o Im
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Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want to

show that | X| = | O].

Let iy, iy, ..., I} be the set of requests in the order they were added to X. Note that | X | = &.
Let j;, j», ---»J,, De the set of requests in order of start/finish time in O. Note that | O | = m.

Let f(7) be the finishing time of job i and s(i) be the starting time of job i.
Claim: for all indices r < k, we have f(i,) < f(J,).

Proof: let r < k.

Assume that for all £ < r, we have f(i,) < f(j,).

There are two cases:

If r = 1, we know that f(i;) < f(Jj;) because the greedy algorithm chooses the job with earliest
finishing time first.

If r > 1, we know by the IH that f(i._;) < f(J,_;)- Notice that f(j._;) < s(J,), soj, must be available
to be chosen by the greedy algorithm.
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Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want to

show that | X| = | O].

Let iy, iy, ..., I} be the set of requests in the order they were added to X. Note that | X | = &.
Let j;, j», ---»J,, De the set of requests in order of start/finish time in O. Note that | O | = m.

Let f(7) be the finishing time of job i and s(i) be the starting time of job i.
Claim: for all indices r < k, we have f(i,) < f(J,).

Proof: let r < k.

Assume that for all £ < r, we have f(i,) < f(j,).

There are two cases:

If r = 1, we know that é(ii L= éf é'! ) because the greedy algorithm chooses the job with earliest
finishing time first.

If r > 1, we know by the IH that f(i._;) < f(J,_;)- Notice that f(j._;) < s(J,), soj, must be available

to be chosen by the greedy algorithm. So f(i,) < £§ ].).
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Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want to
show that | X| = | O].

Let iy, iy, ..., I} be the set of requests in the order they were added to X. Note that | X | = &.
Let j;, j», ---»J,, De the set of requests in order of start/finish time in O. Note that | O | = m.

Let f(7) be the finishing time of job i and s(i) be the starting time of job i.
@aim: for all indices r < k, we have f(i,) < f(J,).

Proof: let r < k.

Assume that for all Z < r, we have f(i,) < f(j,).

There are two cases:

If r = 1, we know that f(i;) < f(Jj;) because the greedy algorithm chooses the job with earliest
finishing time first.

If r > 1, we know by the IH that f(i._;) < f(J,_;)- Notice that f(j._;) < s(J,), soj, must be available
to be chosen by the greedy algorithm. So f(i,) < f(J,).

Because the claim is true in all cases, it holds.
~— /
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Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want to
show that | X| = | O].

Let iy, iy, ..., I} be the set of requests in the order they were added to X. Note that | X | = &.
Let j;, j», ---»J,, De the set of requests in order of start/finish time in O. Note that | O | = m.

Let f(7) be the finishing time of job i and s(i) be the starting time of job i.
Claim: for all indices r < k, we have f(i,) < f(J,).

Proof: let r < k.

Assume that for all Z < r, we have f(i,) < f(j,).

There are two cases:

If r = 1, we know that f(i;) < f(Jj;) because the greedy algorithm chooses the job with earliest
finishing time first.

If r > 1, we know by the IH that f(i._;) < f(J,_;)- Notice that f(j._;) < s(J,), soj, must be available
to be chosen by the greedy algorithm. So f(i,) < f(J,).

Because the claim is true in all cases, it holds.
Have we shown our original claim yet?
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Proof of correctness

Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want to
show that | X| = | O]. Swd@%

Let iy, iy, ..., I} be the set of requests in the order they were added to X. Note that | X | = &.
Let j;, j», ---»J,, De the set of requests in order of start/finish time in O. Note that | O | = m.

j For all indices r < k, we have f(i.) < f(j,,).] _ /(@[\@/Q&% O&A% S’t\cu\g S
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a word problem for you (handout)

In October of 1994
three student filmmakers disappeared
in the woods near Burkittsville, Maryland
while shooting a documentary...

A year later their footage was found.
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