
A criteria that will work

Any ideas?
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EARLIEST-FINISH-TIME-FIRST (n, s1, s2, …, sn , f1, f2, …, fn)                          


SORT jobs by finish times and renumber so that  f1  ≤  f2  ≤  …  ≤  fn.

S ← ∅.

FOR  j = 1  TO  n

     IF  (job j is compatible with S)

         S  ← S ∪ {  j }.

RETURN S.
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Proof of correctness

Let  be an optimal set of intervals and  be the set of intervals that our algorithm chooses. We want 
to show that .

Let  be the set of requests in the order they were added to . Note that . 
Let  be the set of requests in order of start/finish time in . Note that . 

O X
|X | = |O |

i1, i2, …, ik X |X | = k
j1, j2, …, jm O |O | = m
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Proof of correctness

Let  be an optimal set of intervals and  be the set of intervals that our algorithm chooses. We want 
to show that .

Let  be the set of requests in the order they were added to . Note that . 
Let  be the set of requests in order of start/finish time in . Note that . 

Let  be the finishing time of job  and  be the starting time of job .
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Proof of correctness

Let  be an optimal set of intervals and  be the set of intervals that our algorithm chooses. We want 
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Proof of correctness

Let  be an optimal set of intervals and  be the set of intervals that our algorithm chooses. We want 
to show that .

Let  be the set of requests in the order they were added to . Note that . 
Let  be the set of requests in order of start/finish time in . Note that . 

Let  be the finishing time of job  and  be the starting time of job .

Claim: for all indices , we have .

O X
|X | = |O |

i1, i2, …, ik X |X | = k
j1, j2, …, jm O |O | = m

f(i) i s(i) i

r ≤ k f(ir) ≤ f( jr)
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Proof of correctness
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Proof of correctness

Let  be an optimal set of intervals and  be the set of intervals that our algorithm chooses. We want 
to show that .

Let  be the set of requests in the order they were added to . Note that . 
Let  be the set of requests in order of start/finish time in . Note that . 

Let  be the finishing time of job  and  be the starting time of job .

Claim: for all indices , we have .
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Proof of correctness

Let  be an optimal set of intervals and  be the set of intervals that our algorithm chooses. We want to 
show that .

Let  be the set of requests in the order they were added to . Note that . 
Let  be the set of requests in order of start/finish time in . Note that . 

Let  be the finishing time of job  and  be the starting time of job .

Claim: for all indices , we have .

Proof: let . 

Assume that for all , we have .

There are two cases:

If , we know that  because the greedy algorithm chooses the job with earliest 
finishing time first.

O X
|X | = |O |

i1, i2, …, ik X |X | = k
j1, j2, …, jm O |O | = m

f(i) i s(i) i

r ≤ k f(ir) ≤ f( jr)

r ≤ k

ℓ < r f(iℓ) ≤ f( jℓ)

r = 1 f(i1) ≤ f( j1)
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Proof of correctness

Let  be an optimal set of intervals and  be the set of intervals that our algorithm chooses. We want to 
show that .

Let  be the set of requests in the order they were added to . Note that . 
Let  be the set of requests in order of start/finish time in . Note that . 

Let  be the finishing time of job  and  be the starting time of job .

Claim: for all indices , we have .

Proof: let . 

Assume that for all , we have .

There are two cases:

If , we know that  because the greedy algorithm chooses the job with earliest 
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Proof of correctness

Let  be an optimal set of intervals and  be the set of intervals that our algorithm chooses. We want to 
show that .

Let  be the set of requests in the order they were added to . Note that . 
Let  be the set of requests in order of start/finish time in . Note that . 

Let  be the finishing time of job  and  be the starting time of job .

Claim: for all indices , we have .
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Proof of correctness

Let  be an optimal set of intervals and  be the set of intervals that our algorithm chooses. We want to 
show that .

Let  be the set of requests in the order they were added to . Note that . 
Let  be the set of requests in order of start/finish time in . Note that . 

Let  be the finishing time of job  and  be the starting time of job .

Claim: for all indices , we have .

Proof: let . 

Assume that for all , we have .

There are two cases:

If , we know that  because the greedy algorithm chooses the job with earliest 
finishing time first.

If , we know by the IH that . Notice that , so  must be available 
to be chosen by the greedy algorithm.
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|X | = |O |
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Proof of correctness

Let  be an optimal set of intervals and  be the set of intervals that our algorithm chooses. We want to 
show that .

Let  be the set of requests in the order they were added to . Note that . 
Let  be the set of requests in order of start/finish time in . Note that . 

Let  be the finishing time of job  and  be the starting time of job .

Claim: for all indices , we have .

Proof: let . 

Assume that for all , we have .

There are two cases:

If , we know that  because the greedy algorithm chooses the job with earliest 
finishing time first.

If , we know by the IH that . Notice that , so  must be available 
to be chosen by the greedy algorithm. So .
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Proof of correctness

Let  be an optimal set of intervals and  be the set of intervals that our algorithm chooses. We want to 
show that .

Let  be the set of requests in the order they were added to . Note that . 
Let  be the set of requests in order of start/finish time in . Note that . 

Let  be the finishing time of job  and  be the starting time of job .

Claim: for all indices , we have .

Proof: let . 

Assume that for all , we have .

There are two cases:

If , we know that  because the greedy algorithm chooses the job with earliest 
finishing time first.

If , we know by the IH that . Notice that , so  must be available 
to be chosen by the greedy algorithm. So .

Because the claim is true in all cases, it holds.
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Proof of correctness

Let  be an optimal set of intervals and  be the set of intervals that our algorithm chooses. We want to 
show that .

Let  be the set of requests in the order they were added to . Note that . 
Let  be the set of requests in order of start/finish time in . Note that . 

Let  be the finishing time of job  and  be the starting time of job .

Claim: for all indices , we have .

Proof: let . 

Assume that for all , we have .

There are two cases:

If , we know that  because the greedy algorithm chooses the job with earliest 
finishing time first.

If , we know by the IH that . Notice that , so  must be available 
to be chosen by the greedy algorithm. So .

Because the claim is true in all cases, it holds.

Have we shown our original claim yet?
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Proof of correctness

Let  be an optimal set of intervals and  be the set of intervals that our algorithm chooses. We want to 
show that .

Let  be the set of requests in the order they were added to . Note that . 
Let  be the set of requests in order of start/finish time in . Note that . 

For all indices , we have .

Claim: k=m.

O X
|X | = |O |

i1, i2, …, ik X |X | = k
j1, j2, …, jm O |O | = m

r ≤ k f(ir) ≤ f( jr)
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sreedy

-"greedy alg stays-

aread"

Proof :

suppose , for the sake
of contradiction , that

mFK .

That is
,
X andO have different numbers

of

jobs ,
and since O is optimal , mak.

Applying the above
theorem with r

= K, we

have f(ip) = f(jc) .

Since my 17 ,
there must

be a job in O called jky .
This job starts

after

jobjk ends , so job jkt , is ompatible
w/ X.

But that's a contradiction , som = K.
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a word problem for you (handout)
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