A criteria that will work

Any idea??

```
EARLIEST-FINISH-TIME-FIRST (n, s_1, s_2, \ldots, s_n, f_1, f_2, \ldots, f_n)
```

```
SORT jobs by finish times and renumber so that f_1 \le f_2 \le ... \le f_n.

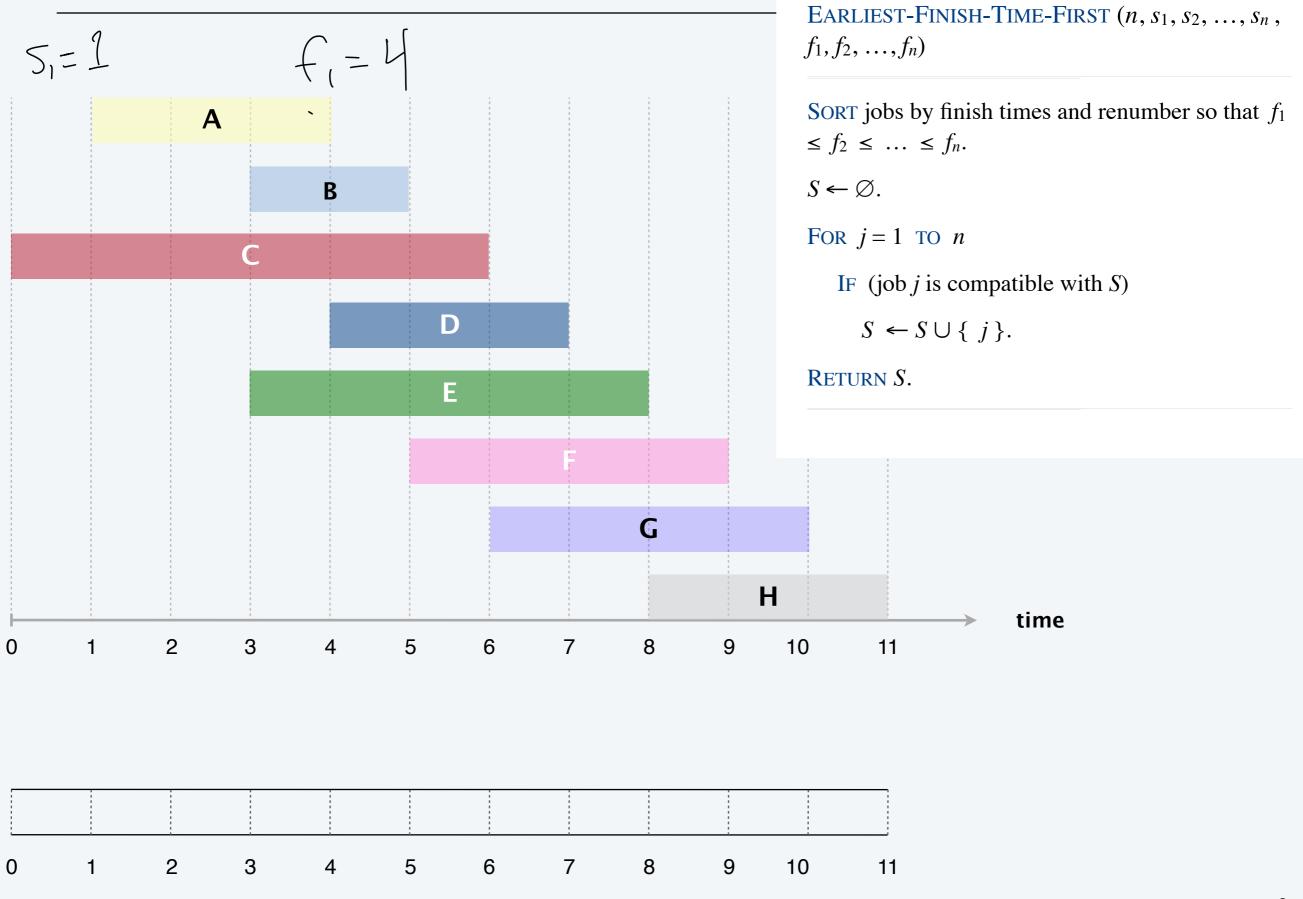
S \leftarrow \emptyset.

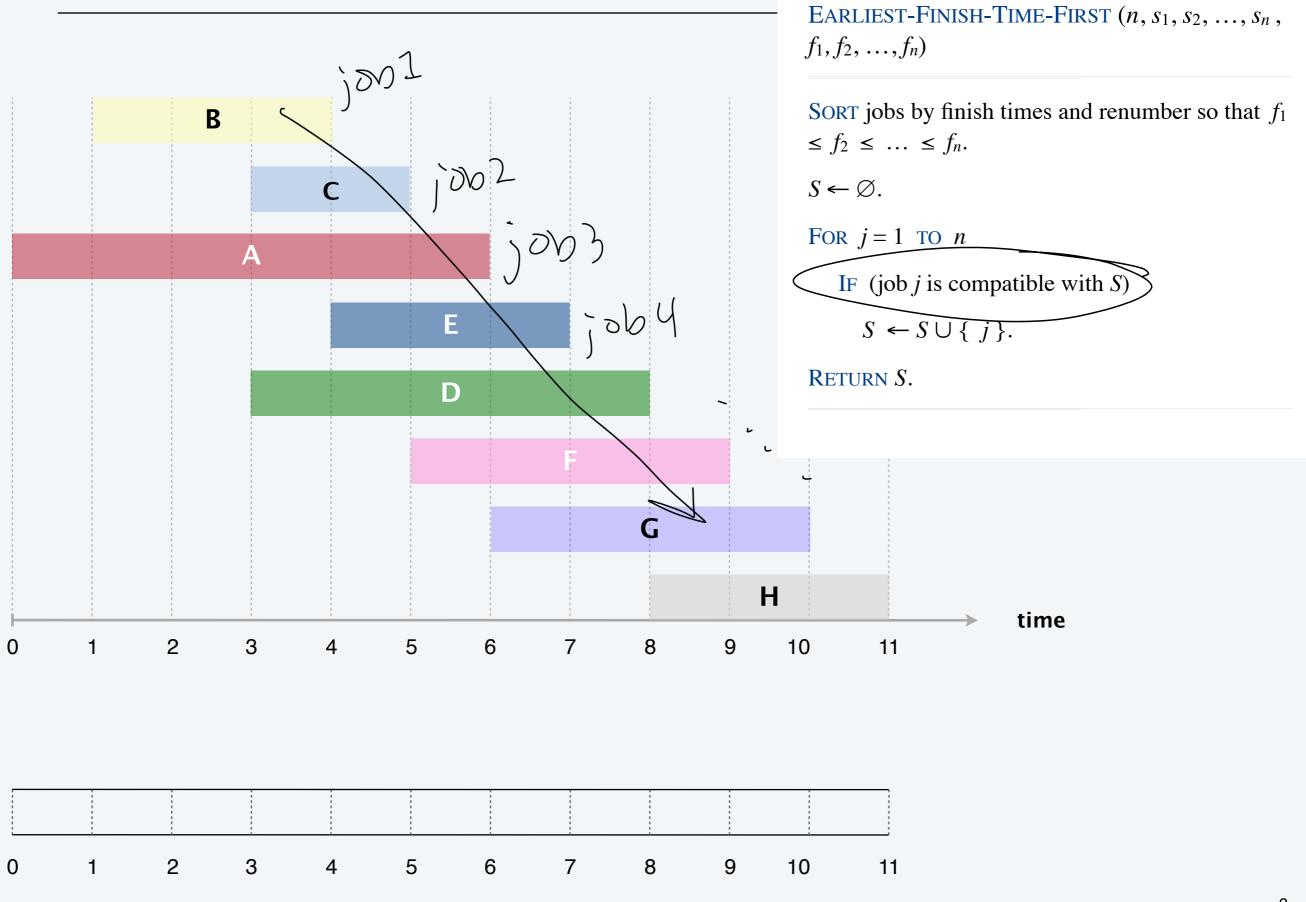
FOR j = 1 TO n

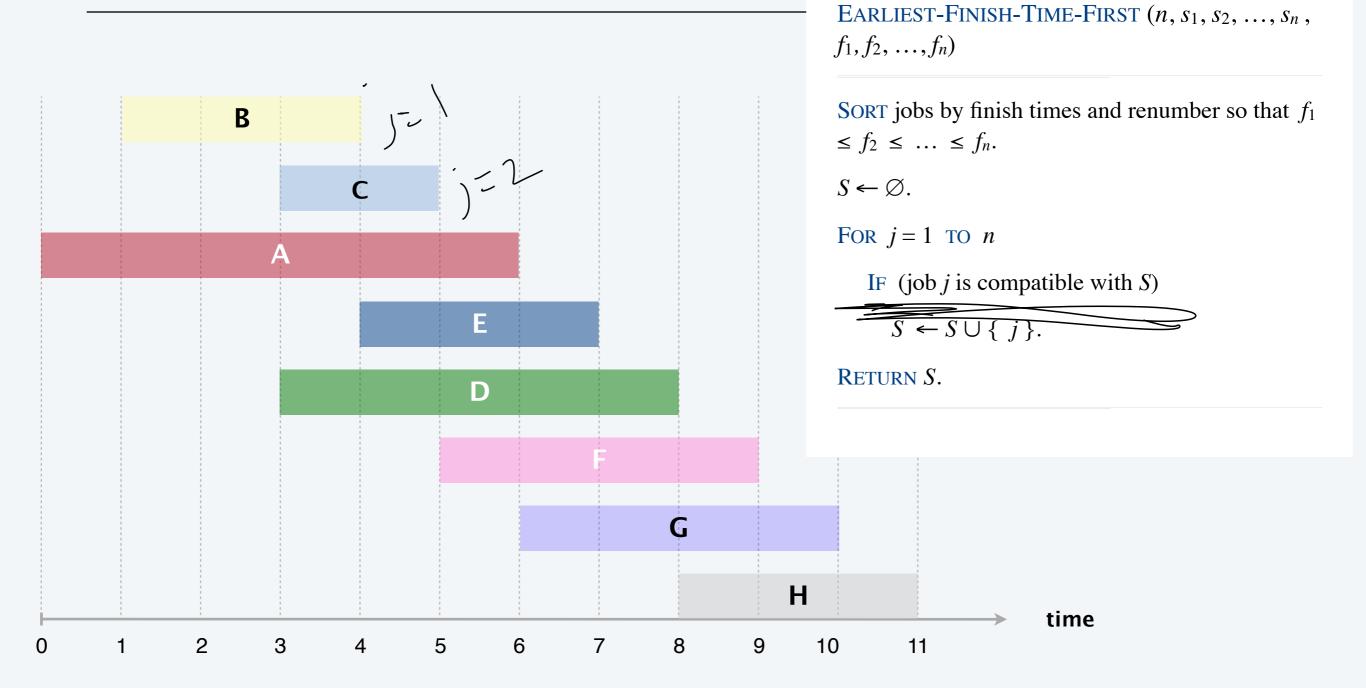
IF (job j is compatible with S)

S \leftarrow S \cup \{ j \}.

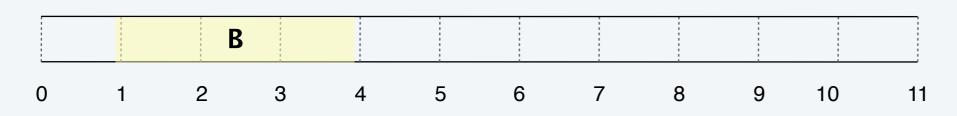
RETURN S.
```

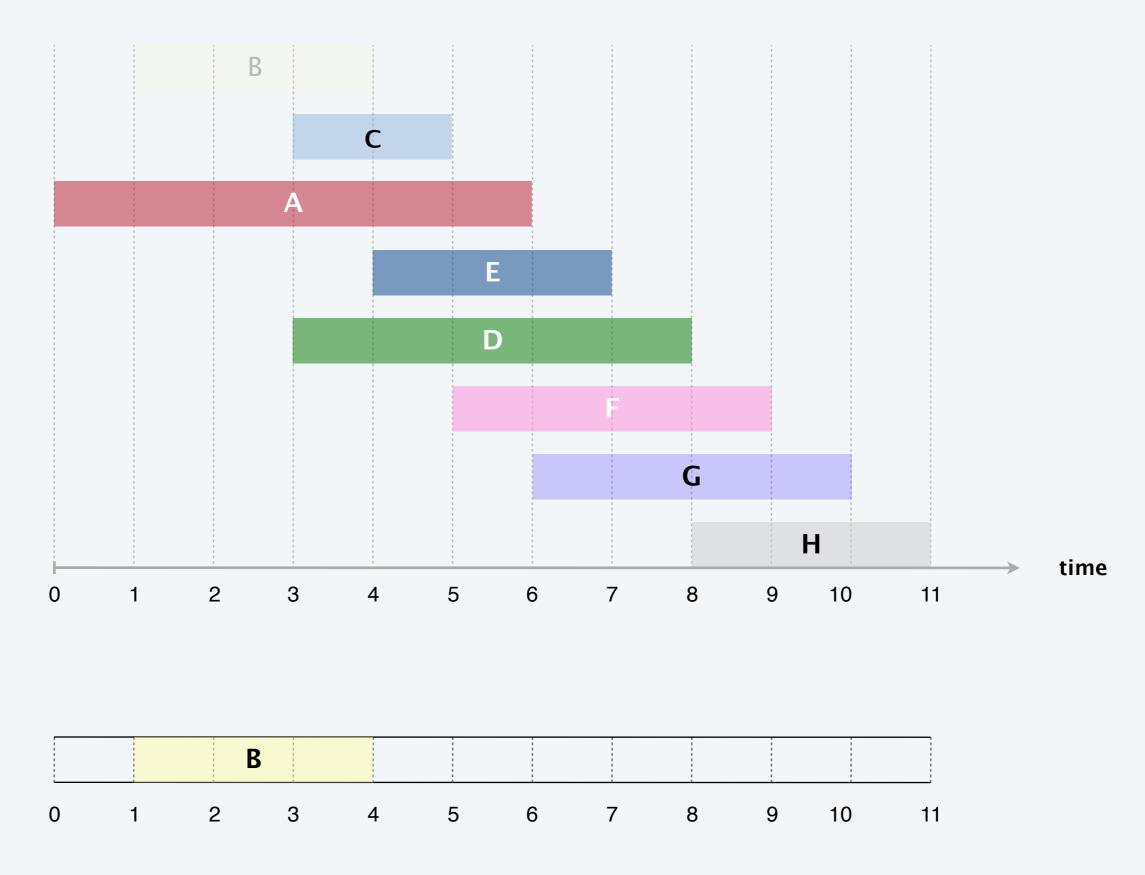


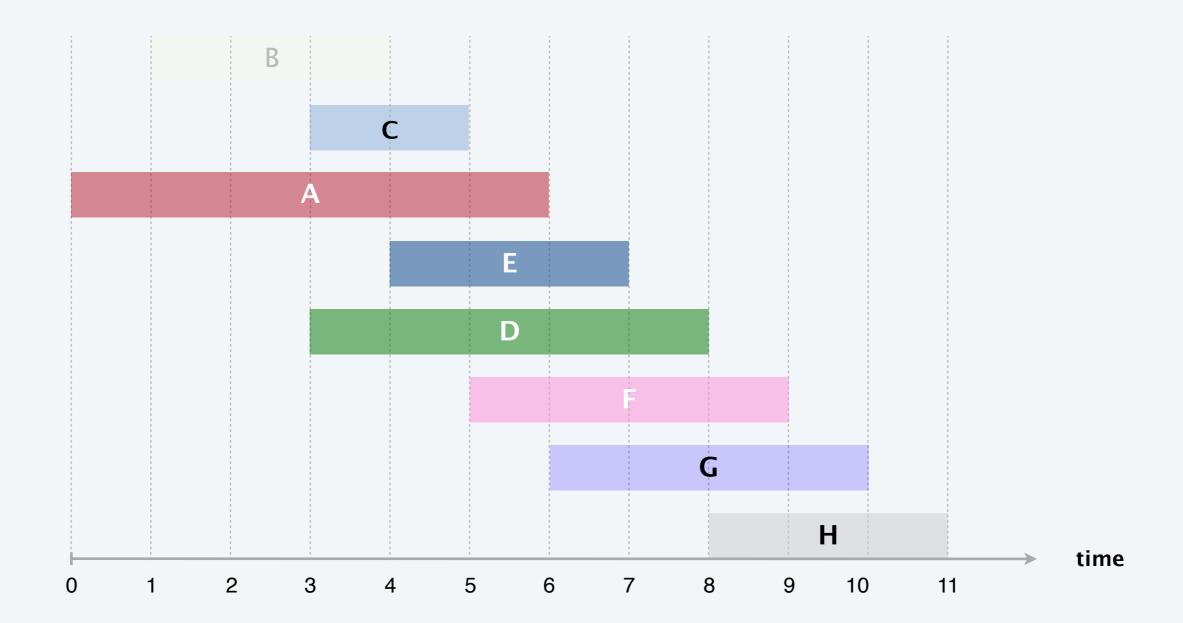




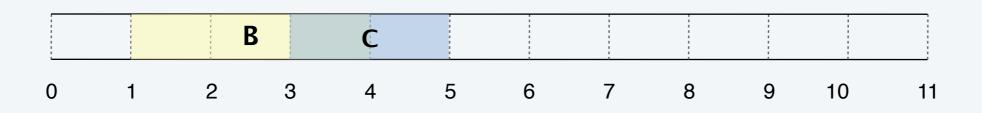
job B is compatible (add to schedule)

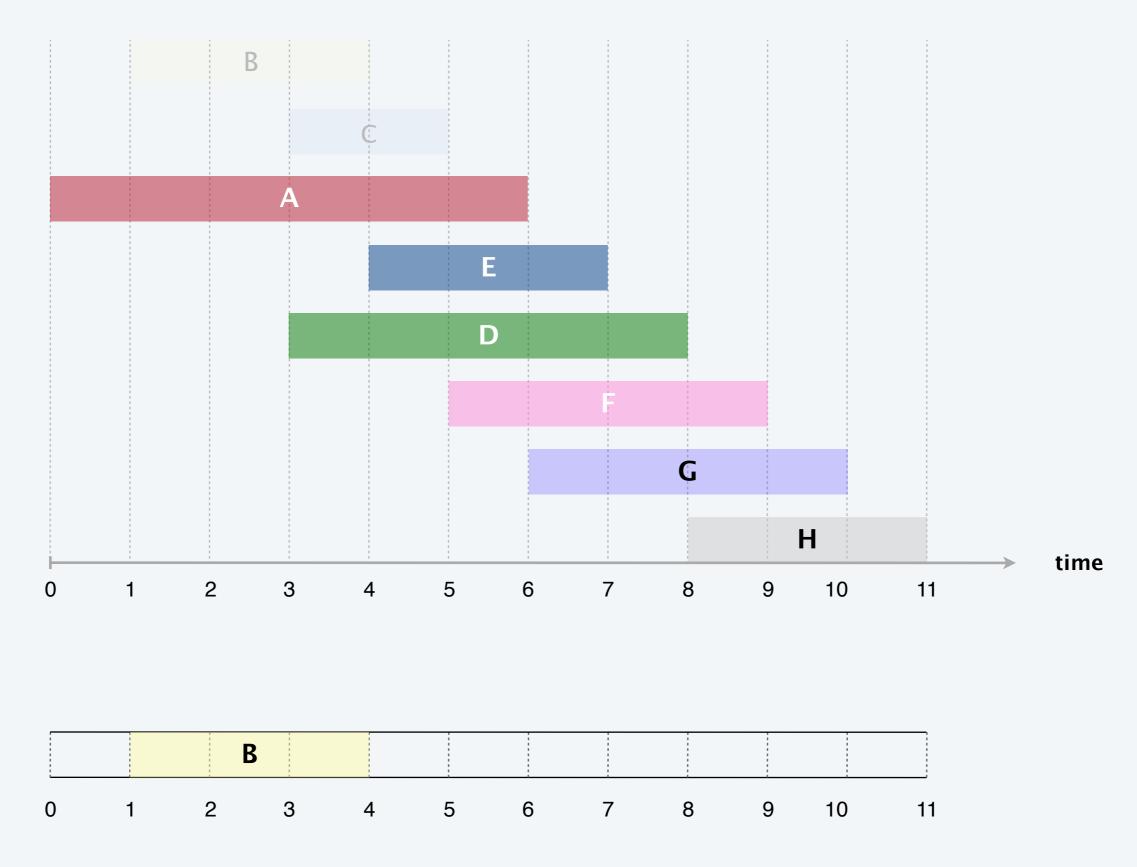




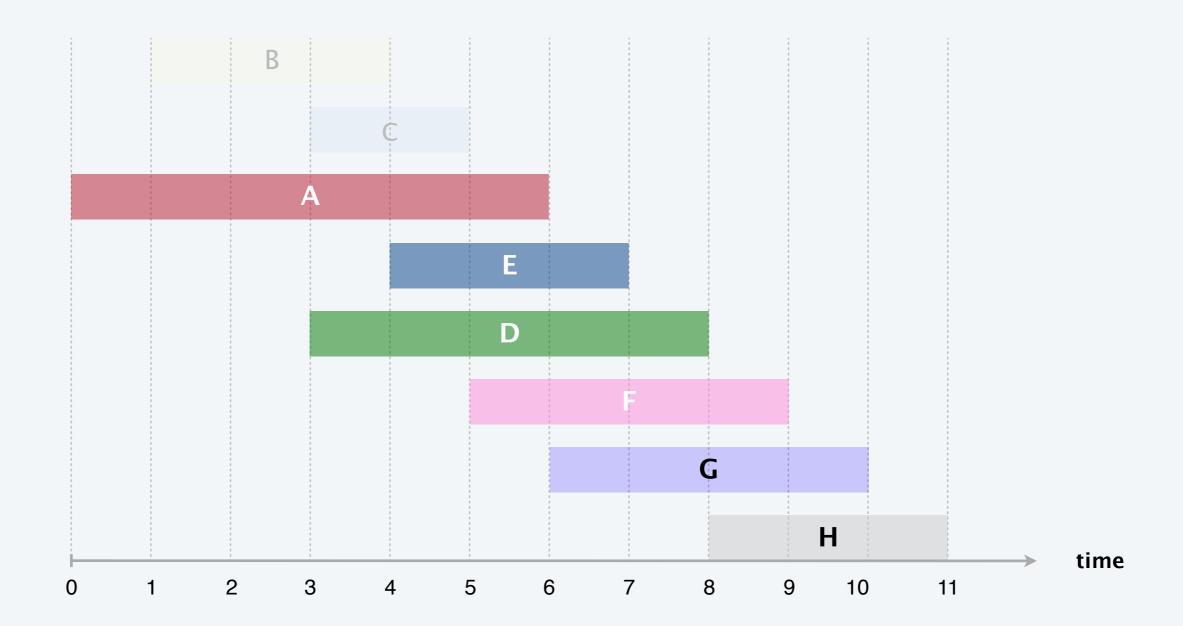


job C is incompatible (do not add to schedule)

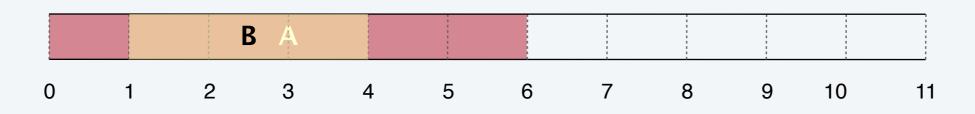


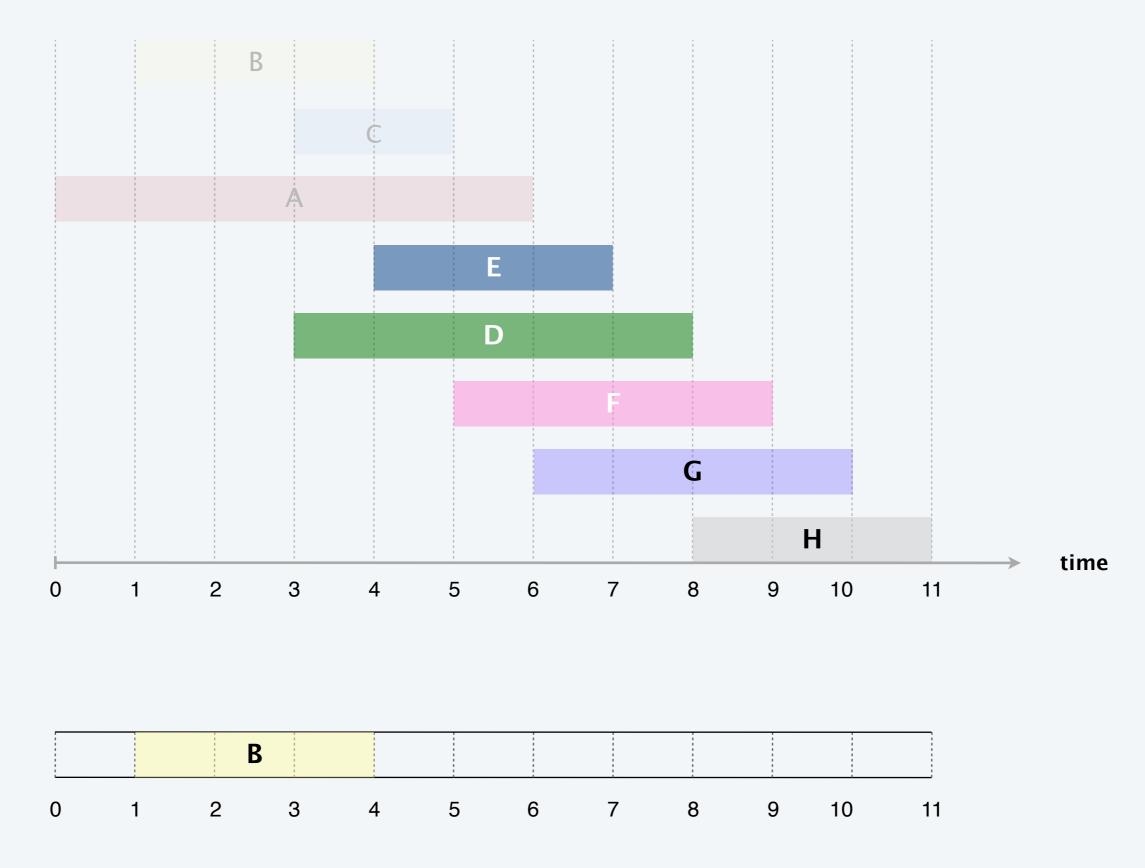


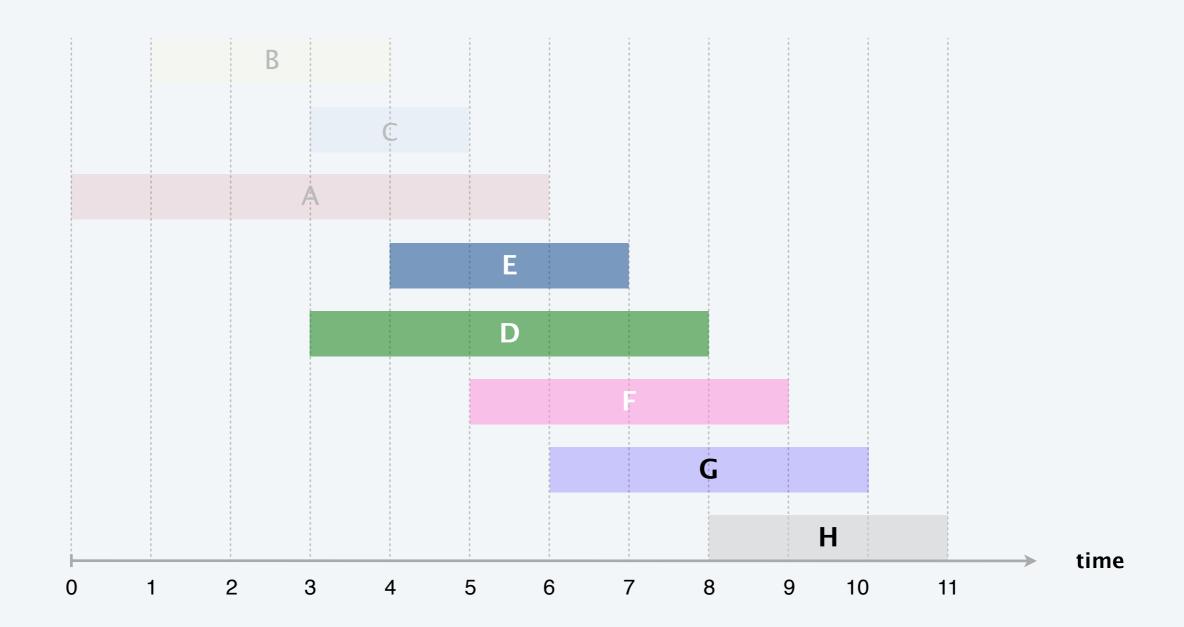
7



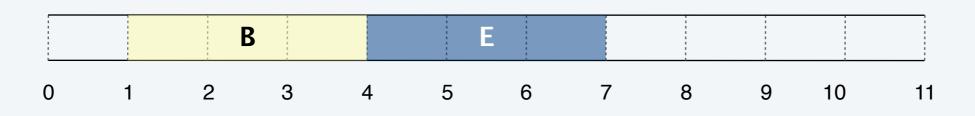
job A is incompatible (do not add to schedule)

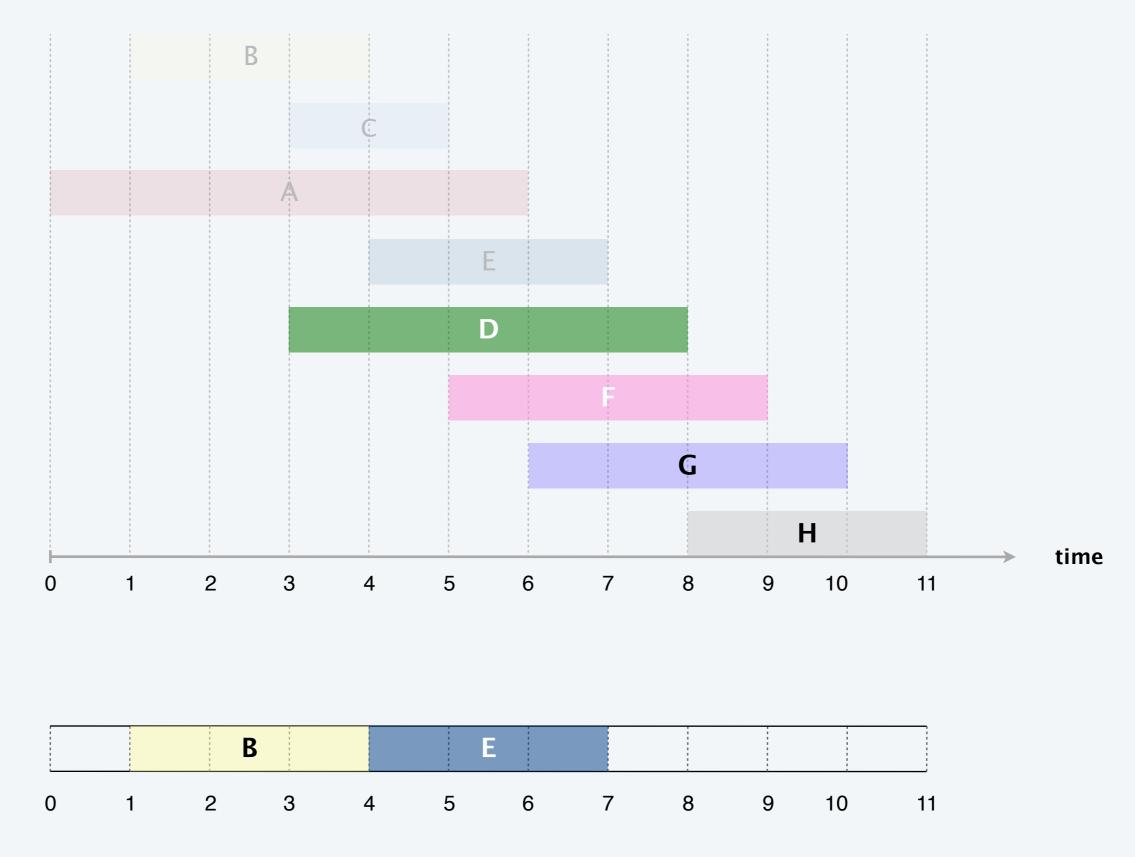


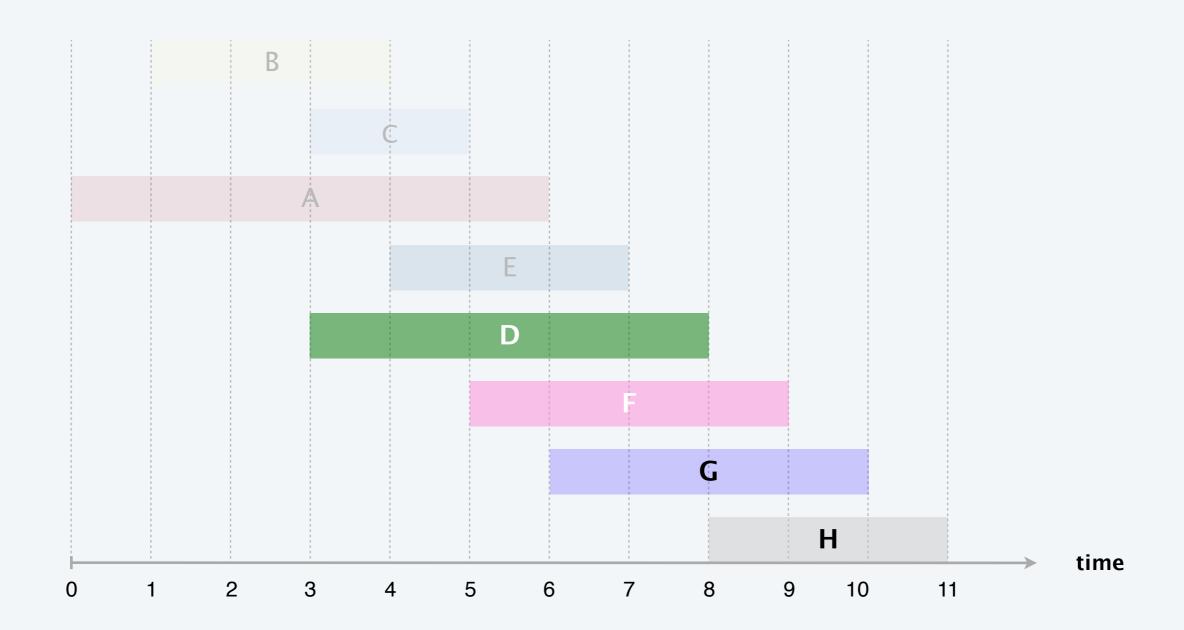




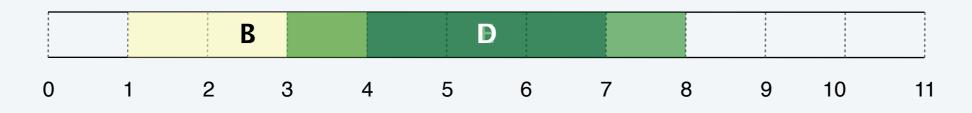
job E is compatible (add to schedule)

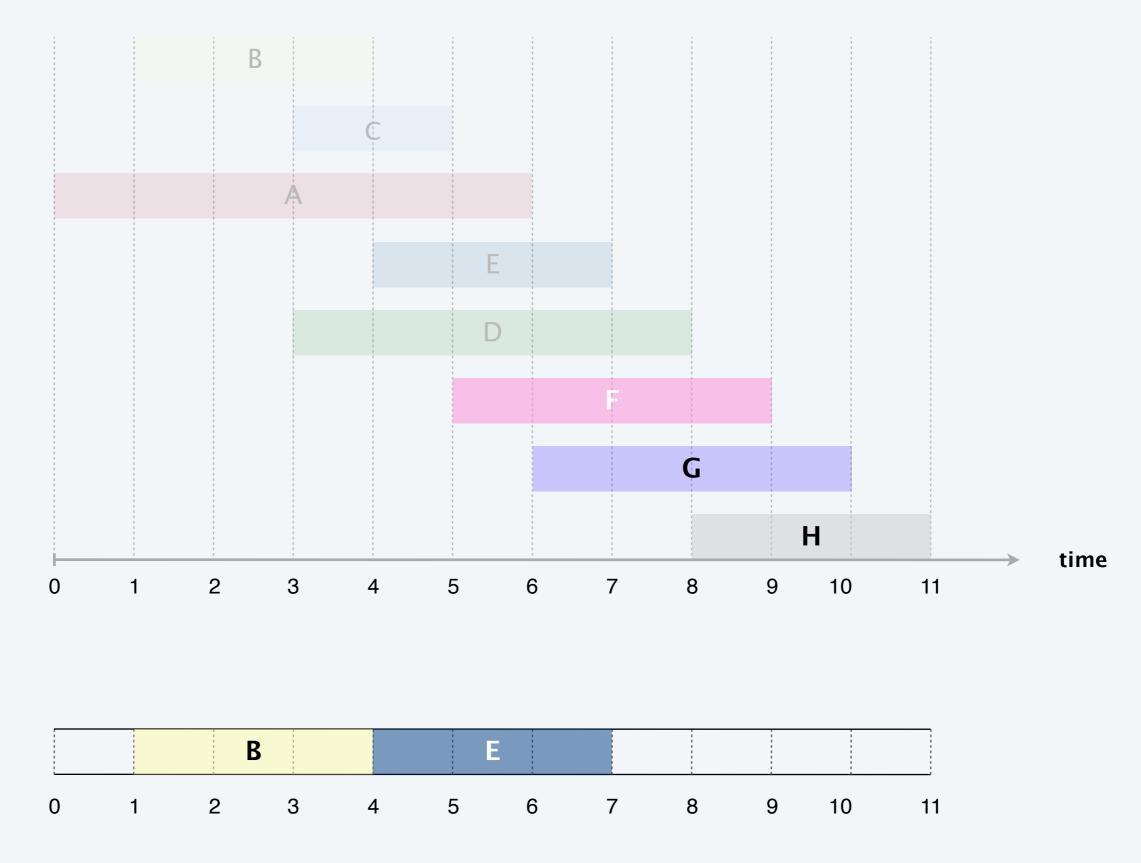


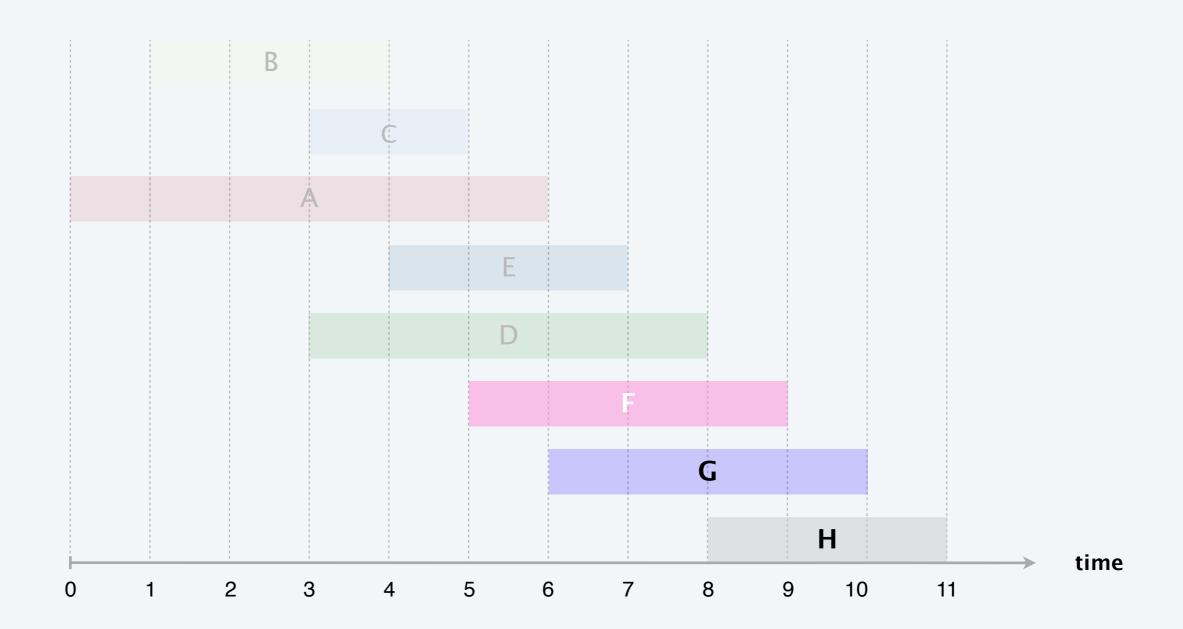




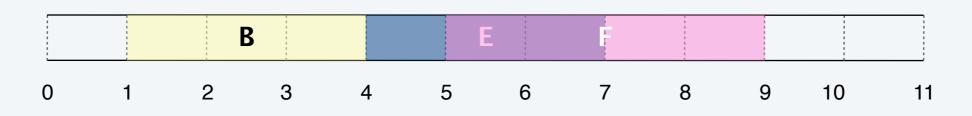
job D is incompatible (do not add to schedule)

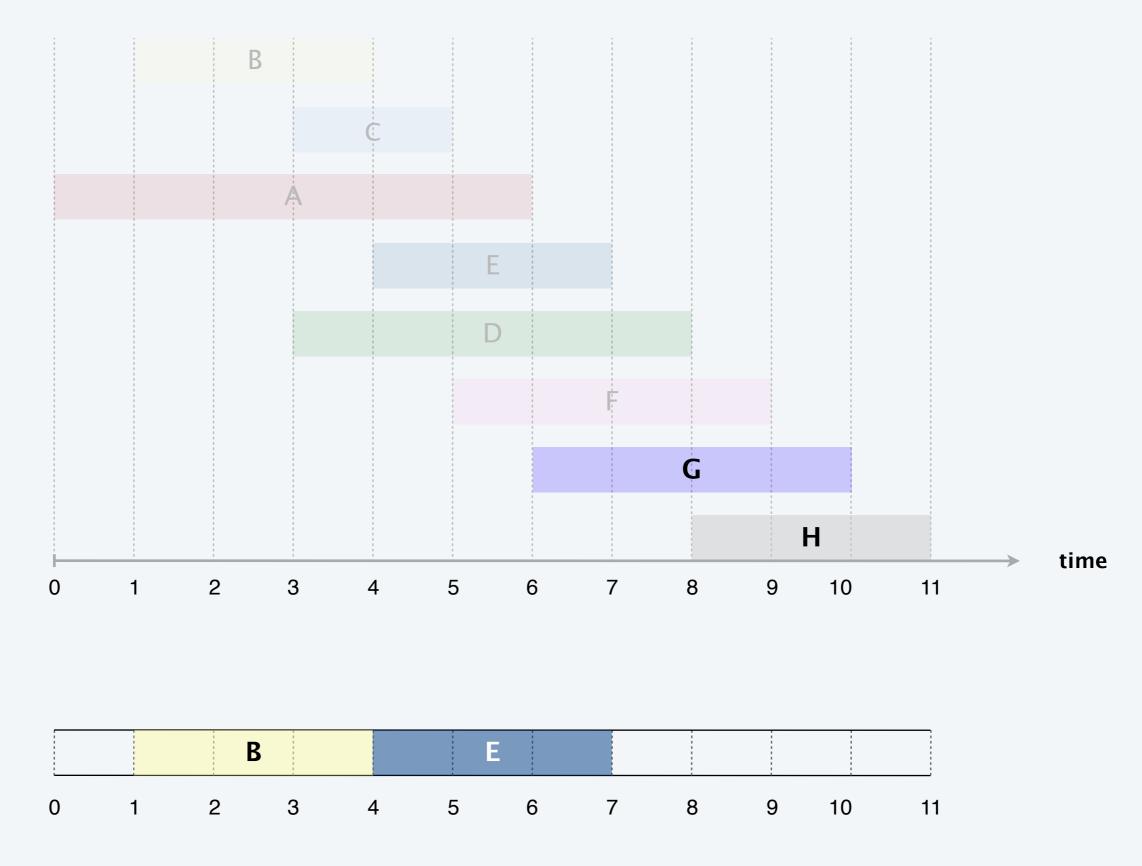


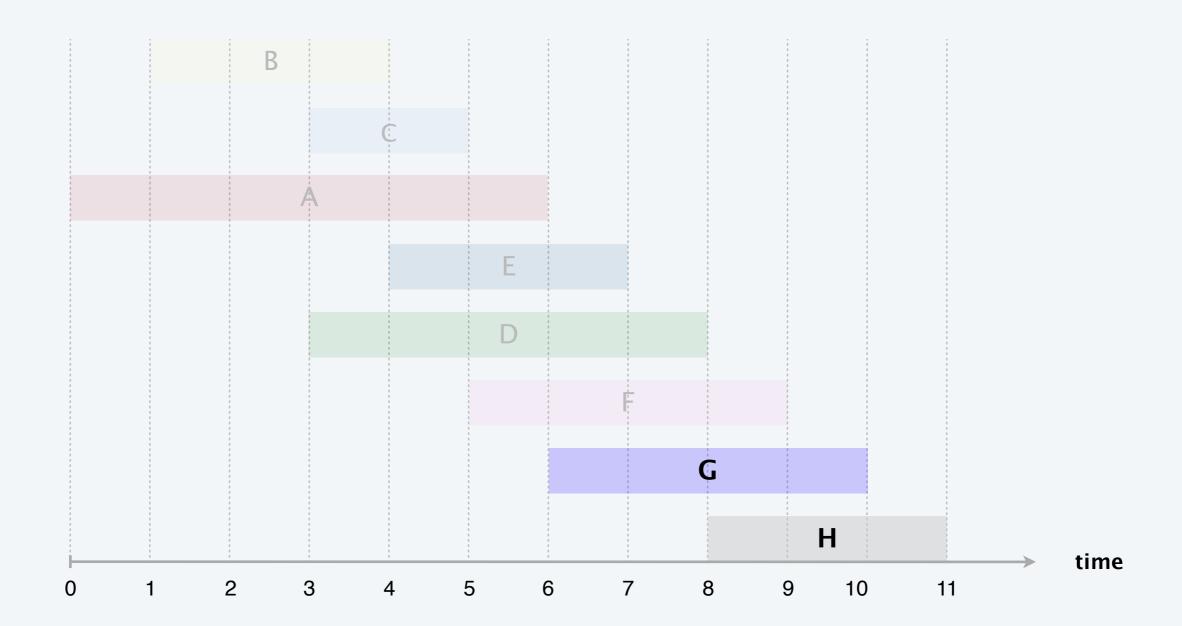




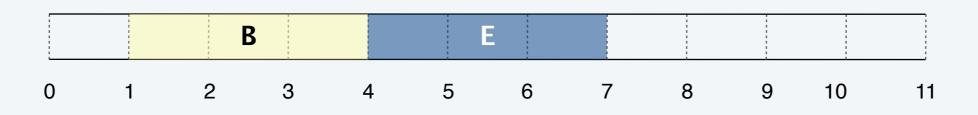
job F is incompatible (do not add to schedule)

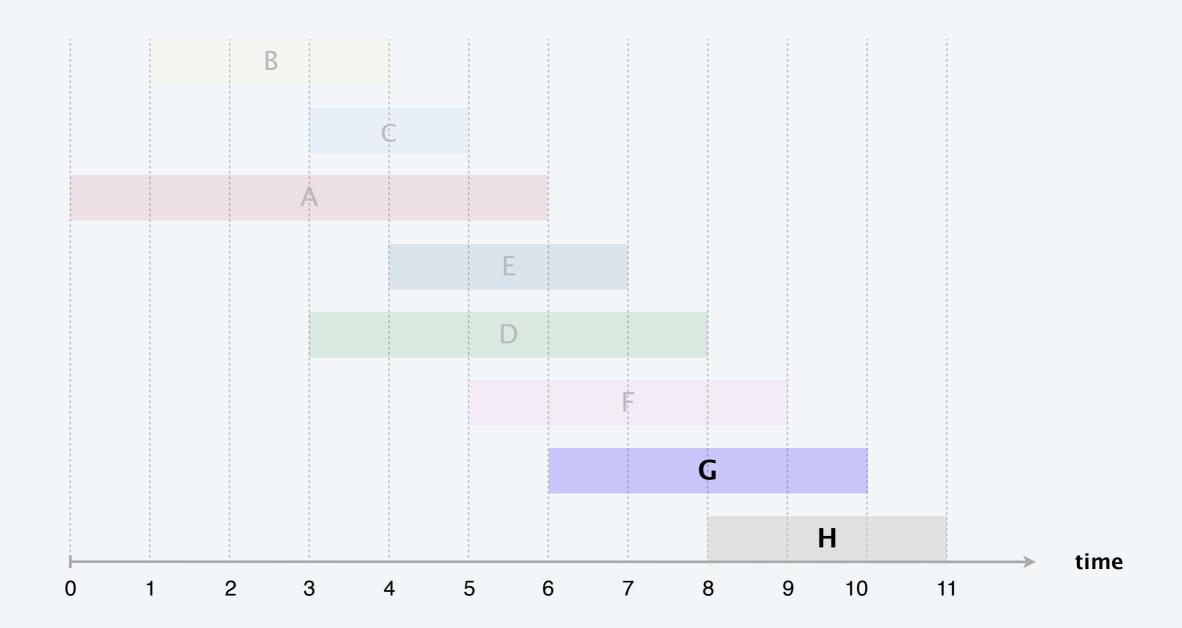




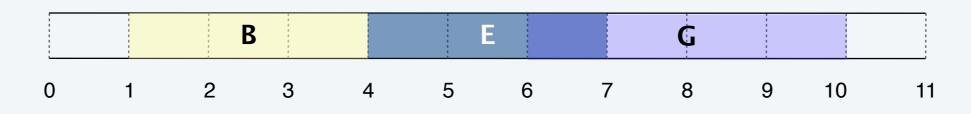


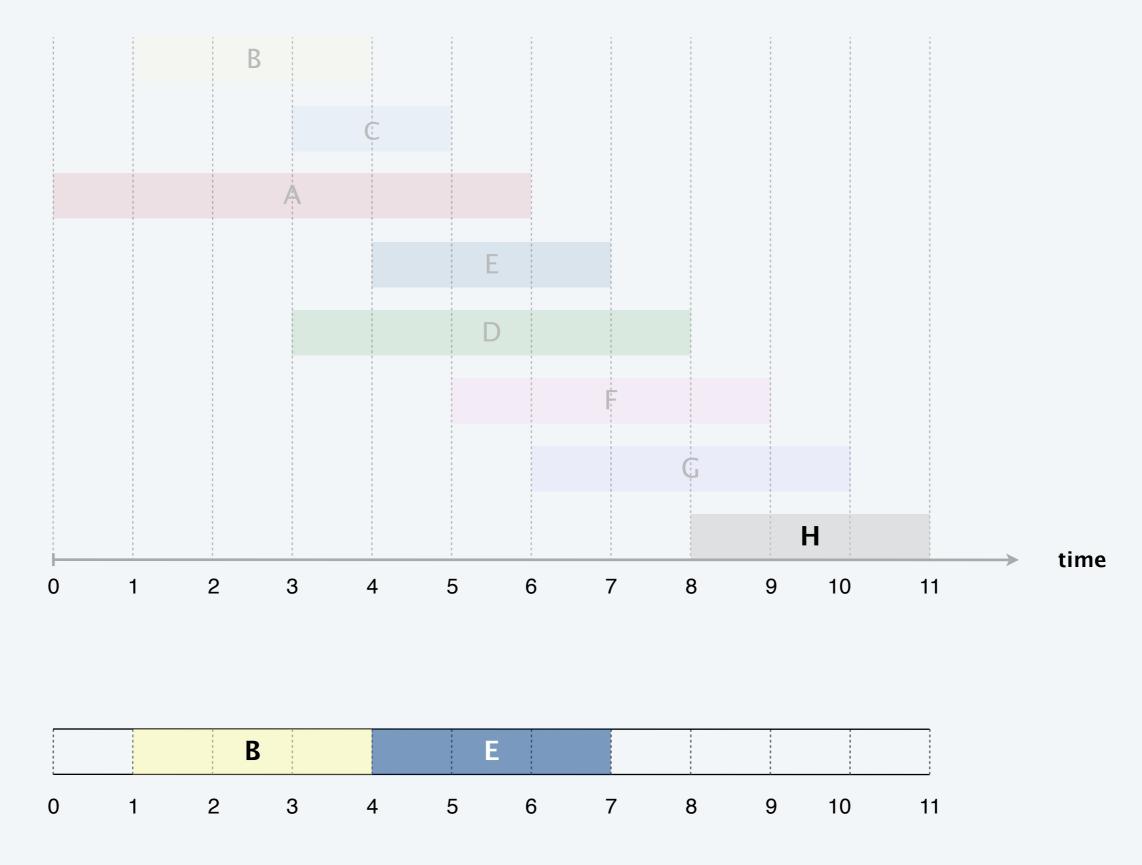
job G is incompatible (do not add to schedule)

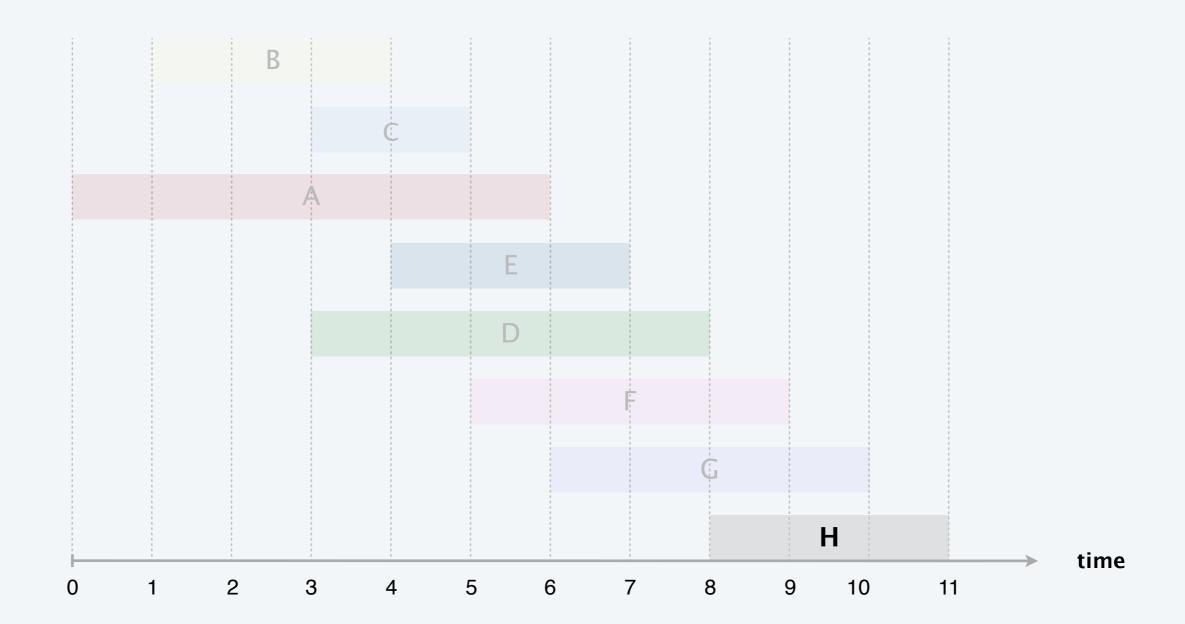




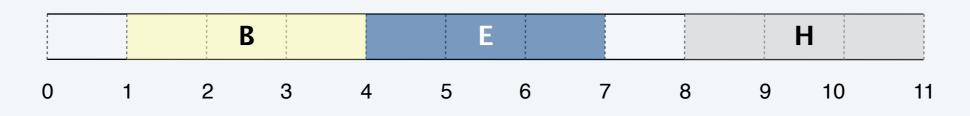
job G is incompatible (do not add to schedule)

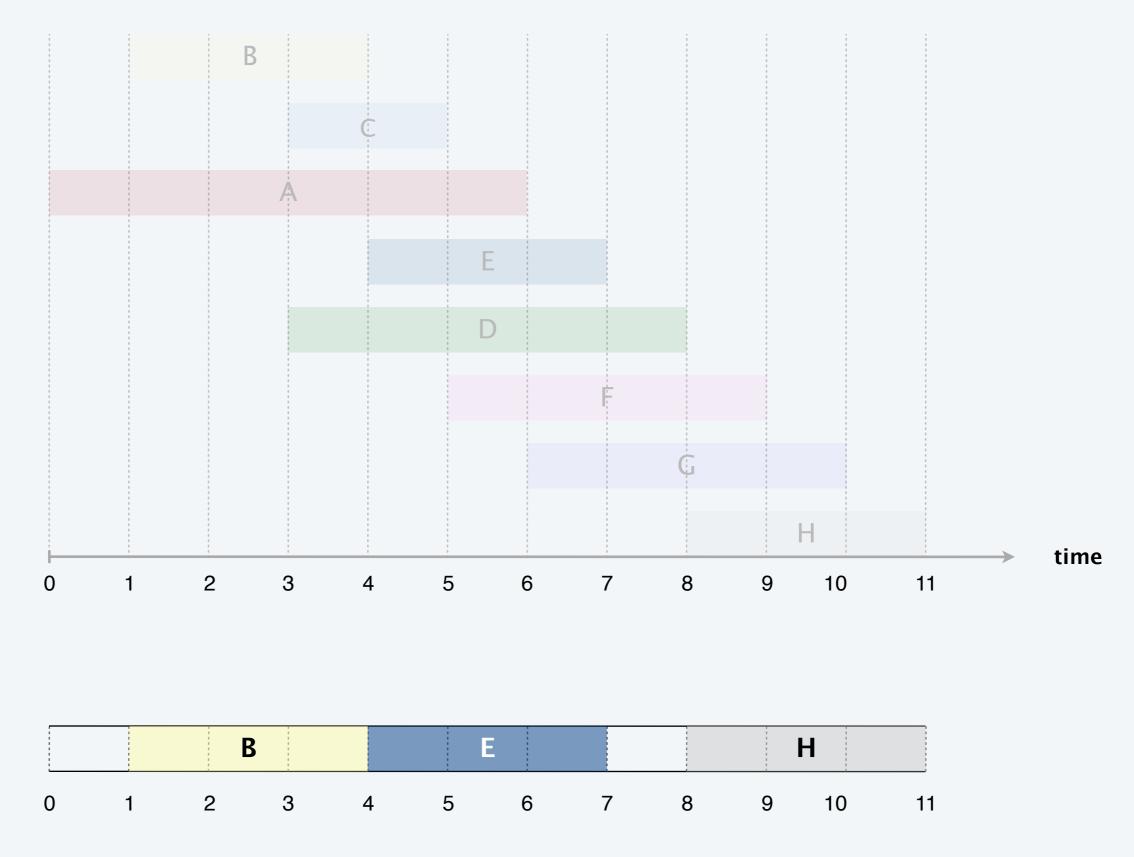


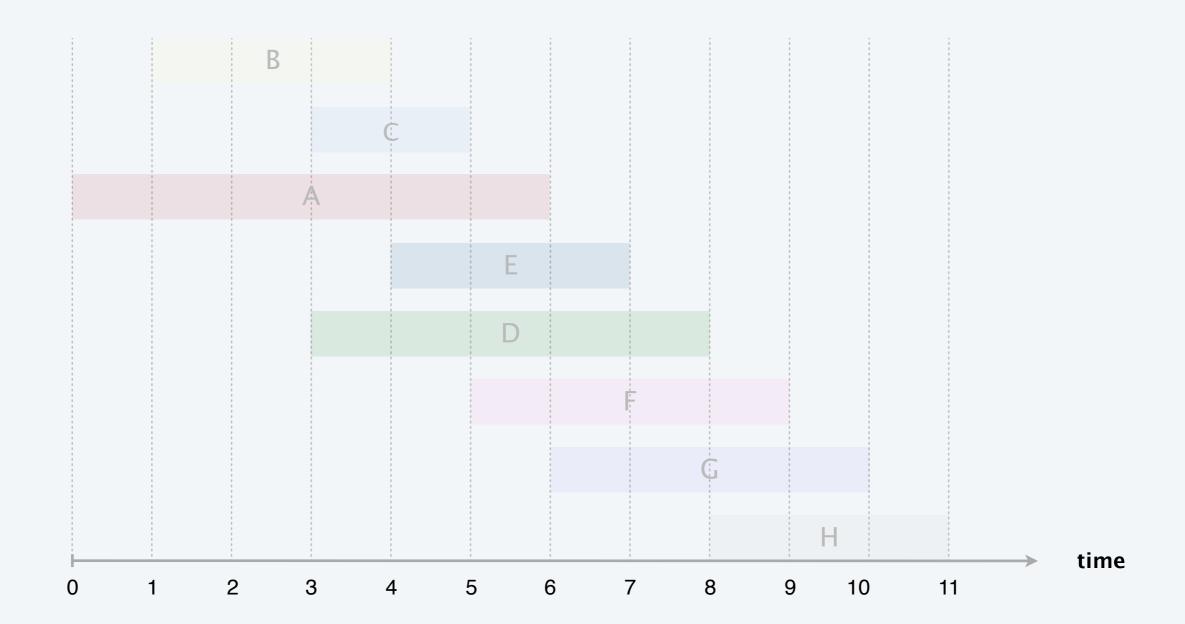




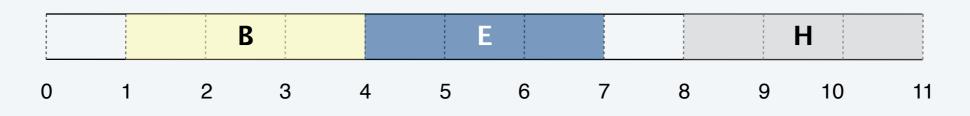
job H is compatible (add to schedule)







done (an optimal set of jobs)

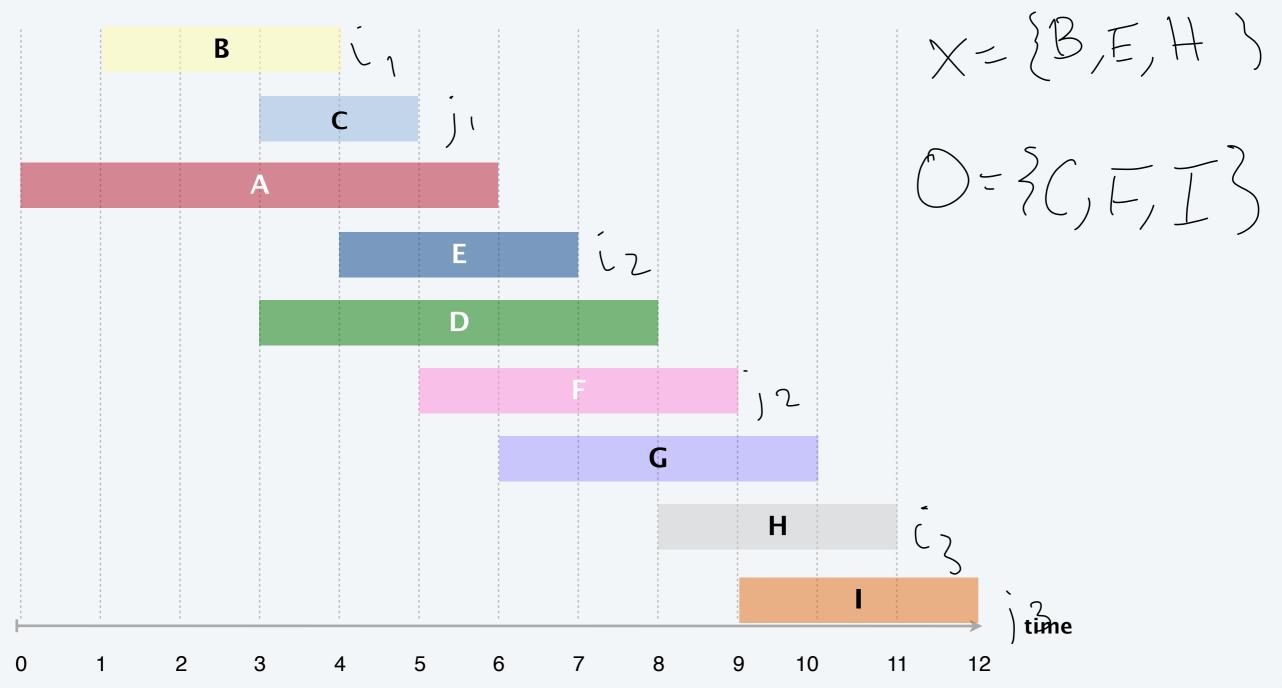


Let *O* be an optimal set of intervals and *X* be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

Let $i_1, i_2, ..., i_k$ be the set of requests in the order they were added to X. Note that |X| = k. Let $j_1, j_2, ..., j_m$ be the set of requests in order of start/finish time in O. Note that |O| = m.

Let *O* be an optimal set of intervals and *X* be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

Let $i_1, i_2, ..., i_k$ be the set of requests in the order they were added to *X*. Note that |X| = k. Let $j_1, j_2, ..., j_m$ be the set of requests in order of start/finish time in *O*. Note that |O| = m.



Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

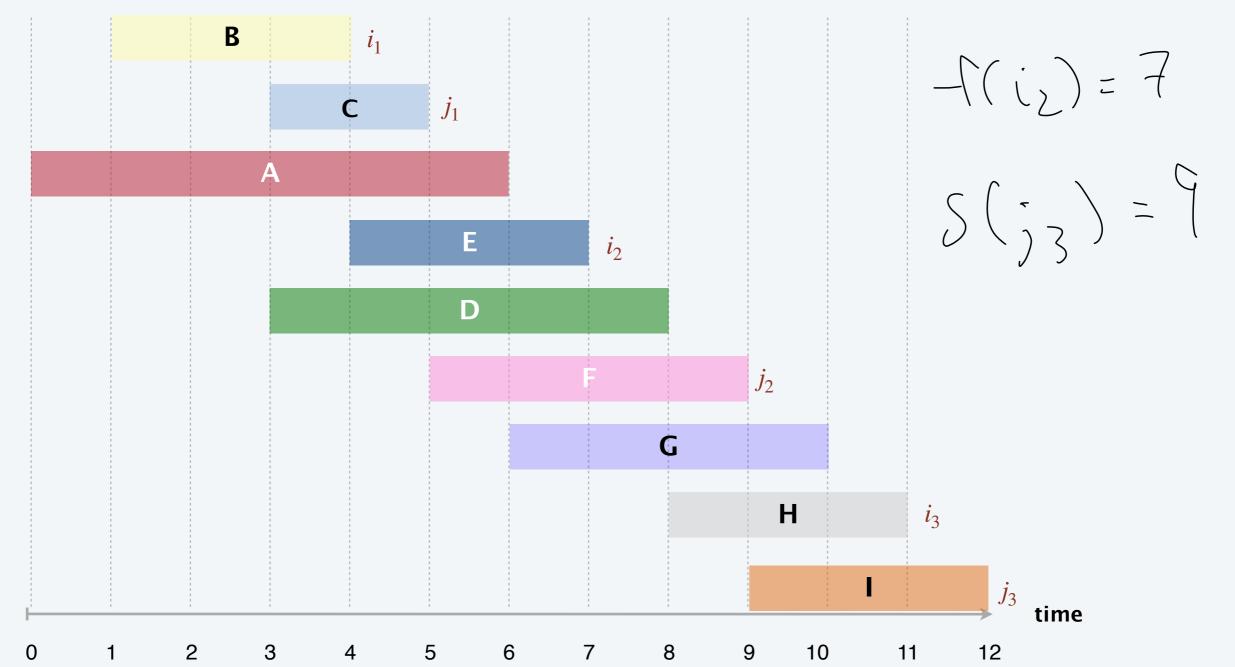
Let $i_1, i_2, ..., i_k$ be the set of requests in the order they were added to *X*. Note that |X| = k. Let $j_1, j_2, ..., j_m$ be the set of requests in order of start/finish time in *O*. Note that |O| = m.

Let f(i) be the finishing time of job i and s(i) be the starting time of job i.

Let *O* be an optimal set of intervals and *X* be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

Let $i_1, i_2, ..., i_k$ be the set of requests in the order they were added to *X*. Note that |X| = k. Let $j_1, j_2, ..., j_m$ be the set of requests in order of start/finish time in *O*. Note that |O| = m.

Let f(i) be the finishing time of job i and s(i) be the starting time of job i.



25

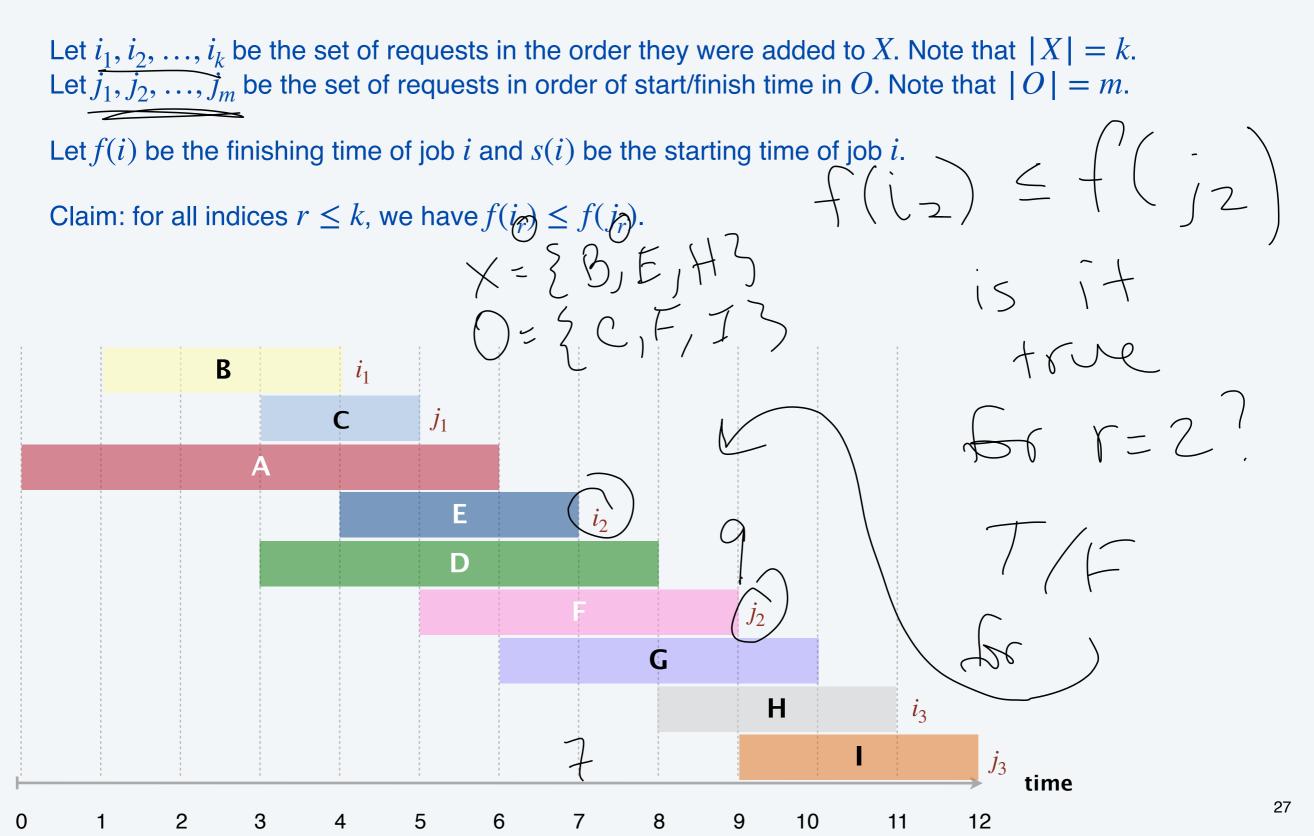
Let *O* be an optimal set of intervals and *X* be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

Let $i_1, i_2, ..., i_k$ be the set of requests in the order they were added to *X*. Note that |X| = k. Let $j_1, j_2, ..., j_m$ be the set of requests in order of start/finish time in *O*. Note that |O| = m.

Let f(i) be the finishing time of job i and s(i) be the starting time of job i.

Claim: for all indices $r \leq k$, we have $f(i_r) \leq f(j_r)$.

Let *O* be an optimal set of intervals and *X* be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.



Let O be an optimal set of intervals and X be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

Let $i_1, i_2, ..., i_k$ be the set of requests in the order they were added to X. Note that |X| = k. Let $j_1, j_2, ..., j_m$ be the set of requests in order of start/finish time in O. Note that |O| = m.

Let f(i) be the finishing time of job i and s(i) be the starting time of job i.

Claim: for all indices $r \leq k$, we have $f(i_r) \leq f(j_r)$.

Base case Mductive

For r, $f(ir) \leq f(jr)$, and because V) was additrary, the claim holds for gll r $\leq k$. 28

Let *O* be an optimal set of intervals and *X* be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

Let $i_0, i_2, ..., i_k$ be the set of requests in the order they were added to *X*. Note that |X| = k. Let $j_0, j_2, ..., j_m$ be the set of requests in order of start/finish time in *O*. Note that |O| = m.

Let f(i) be the finishing time of job i and s(i) be the starting time of job i.

Claim: for all indices $r \leq k$, we have $f(i_r) \leq f(j_r)$.

Proof: let
$$r \leq k$$
. Assume arbitrary instance.
Assume that for all $\ell < r$, we have $f(i_{\ell}) \leq f(j_{\ell})$. Inductive hypothesis.

There are two cases:

If r = 1, we know that $f(i_1) \le f(j_1)$ because the greedy algorithm chooses the job with earliest finishing time first.

Let *O* be an optimal set of intervals and *X* be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

Let $i_1, i_2, ..., i_k$ be the set of requests in the order they were added to *X*. Note that |X| = k. Let $j_1, j_2, ..., j_m$ be the set of requests in order of start/finish time in *O*. Note that |O| = m.

Let f(i) be the finishing time of job i and s(i) be the starting time of job i.

Claim: for all indices $r \leq k$, we have $f(i_r) \leq f(j_r)$.

Proof: let $r \leq k$.

Assume that for all $\ell < r$, we have $f(i_{\ell}) \leq f(j_{\ell})$.

There are two cases:

If r = 1, we know that $f(i_1) \le f(j_1)$ because the greedy algorithm chooses the job with earliest finishing time first. If $r \not m = 1$, we know by the IH that $f(i_1 \le f(j_2) \le f(j_3))$

Let *O* be an optimal set of intervals and *X* be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

Let $i_1, i_2, ..., i_k$ be the set of requests in the order they were added to *X*. Note that |X| = k. Let $j_1, j_2, ..., j_m$ be the set of requests in order of start/finish time in *O*. Note that |O| = m.

Let f(i) be the finishing time of job i and s(i) be the starting time of job i.

Claim: for all indices $r \leq k$, we have $f(i_r) \leq f(j_r)$.

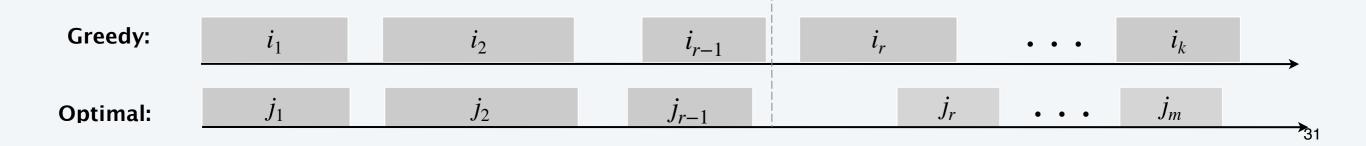
Proof: let $r \leq k$.

Assume that for all $\ell < r$, we have $f(i_{\ell}) \leq f(j_{\ell})$.

There are two cases:

If r = 1, we know that $f(i_1) \le f(j_1)$ because the greedy algorithm chooses the job with earliest finishing time first.

If $r \ge 1$, we know by the IH that $f(i_{r-1}) \le f(j_{r-1})$.



Let *O* be an optimal set of intervals and *X* be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

Let $i_1, i_2, ..., i_k$ be the set of requests in the order they were added to *X*. Note that |X| = k. Let $j_1, j_2, ..., j_m$ be the set of requests in order of start/finish time in *O*. Note that |O| = m.

Let f(i) be the finishing time of job i and s(i) be the starting time of job i.

Claim: for all indices $r \leq k$, we have $f(i_r) \leq f(j_r)$.

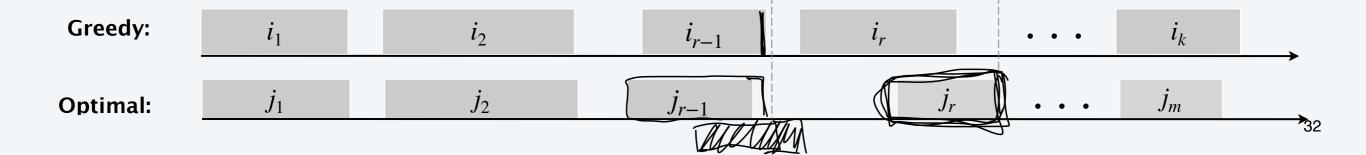
Proof: let $r \leq k$.

Assume that for all $\ell < r$, we have $f(i_{\ell}) \leq f(j_{\ell})$.

There are two cases:

If r = 1, we know that $f(i_1) \le f(j_1)$ because the greedy algorithm chooses the job with earliest finishing time first.

If $r \ge 1$, we know by the IH that $f(i_{r-1}) \le f(j_{r-1})$. Notice that $f(j_{r-1}) \le s(j_r)$, so j_r must be available to be chosen by the greedy algorithm.



Let *O* be an optimal set of intervals and *X* be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

Let $i_1, i_2, ..., i_k$ be the set of requests in the order they were added to *X*. Note that |X| = k. Let $j_1, j_2, ..., j_m$ be the set of requests in order of start/finish time in *O*. Note that |O| = m.

Let f(i) be the finishing time of job i and s(i) be the starting time of job i.

Claim: for all indices $r \leq k$, we have $f(i_r) \leq f(j_r)$.

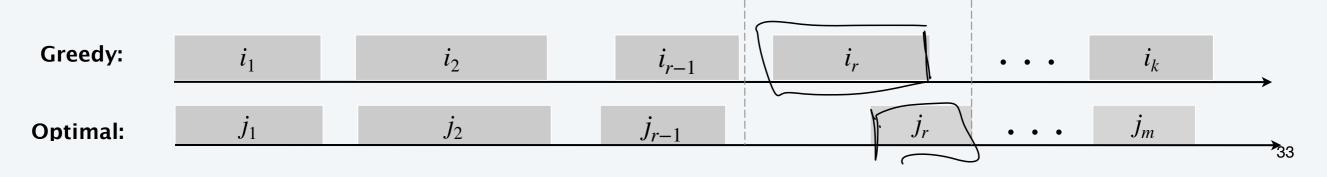
Proof: let $r \leq k$.

Assume that for all $\ell < r$, we have $f(i_{\ell}) \leq f(j_{\ell})$.

There are two cases:

If r = 1, we know that $f(i_1) \le f(j_1)$ because the greedy algorithm chooses the job with earliest finishing time first.

If $r \ge 1$, we know by the IH that $f(i_{r-1}) \le f(j_{r-1})$. Notice that $f(j_{r-1}) \le s(j_r)$, so j_r must be available to be chosen by the greedy algorithm. So $f(i_r) \le f(j_r)$.



Let *O* be an optimal set of intervals and *X* be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

Let $i_1, i_2, ..., i_k$ be the set of requests in the order they were added to *X*. Note that |X| = k. Let $j_1, j_2, ..., j_m$ be the set of requests in order of start/finish time in *O*. Note that |O| = m.

Let f(i) be the finishing time of job i and s(i) be the starting time of job i.

```
Claim: for all indices r \leq k, we have f(i_r) \leq f(j_r).
```

```
Proof: let r \leq k.
```

Assume that for all $\ell < r$, we have $f(i_{\ell}) \leq f(j_{\ell})$.

There are two cases:

If r = 1, we know that $f(i_1) \le f(j_1)$ because the greedy algorithm chooses the job with earliest finishing time first.

If $r \ge 1$, we know by the IH that $f(i_{r-1}) \le f(j_{r-1})$. Notice that $f(j_{r-1}) \le s(j_r)$, so j_r must be available to be chosen by the greedy algorithm. So $f(i_r) \le f(j_r)$.

Because the claim is true in all cases, it holds.

Let *O* be an optimal set of intervals and *X* be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

Let $i_1, i_2, ..., i_k$ be the set of requests in the order they were added to *X*. Note that |X| = k. Let $j_1, j_2, ..., j_m$ be the set of requests in order of start/finish time in *O*. Note that |O| = m.

Let f(i) be the finishing time of job i and s(i) be the starting time of job i.

```
Claim: for all indices r \leq k, we have f(i_r) \leq f(j_r).
```

Proof: let $r \leq k$.

Assume that for all $\ell < r$, we have $f(i_{\ell}) \leq f(j_{\ell})$.

There are two cases:

If r = 1, we know that $f(i_1) \le f(j_1)$ because the greedy algorithm chooses the job with earliest finishing time first.

If $r \ge 1$, we know by the IH that $f(i_{r-1}) \le f(j_{r-1})$. Notice that $f(j_{r-1}) \le s(j_r)$, so j_r must be available to be chosen by the greedy algorithm. So $f(i_r) \le f(j_r)$.

Because the claim is true in all cases, it holds.

Have we shown our original claim yet?

Let *O* be an optimal set of intervals and *X* be the set of intervals that our algorithm chooses. We want to show that |X| = |O|.

Let $i_1, i_2, ..., i_k$ be the set of requests in the order they were added to *X*. Note that |X| = k. Let $j_1, j_2, ..., j_m$ be the set of requests in order of start/finish time in *O*. Note that |O| = m.

For all indices
$$r \leq k$$
, we have $f(i_r) \leq f(j_r)$. "Greeding alg strengs
Claim: k=m.
Proof:
Suppose, for the sake of contradiction, that $m \neq k$.
Suppose, for the sake of contradiction, that $m \neq k$.
That is, X and O have different numbers of
That is, X and O have different numbers of
That is, X and O have different numbers of
Supplying the above theorem with $r = k$, we
Applying the above theorem with $r = k$, we
have $f(i_k) \leq f(j_k)$. Since $m \geq k$, there must
be a job in O called jkm. This job starts after
job jk ends, so job jkm is simpatible w/X.
But mat's a contradiction, so $m = k$.

In summary: - proved greedy alg stayed ahead this implies that greedy is opt

a word problem for you (handout)

back at

×

In October of 1994 three student filmmakers disappeared in the woods near Burkittsville, Maryland while shooting a documentary...

A year later their footage was found.

