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Proof boilerplate: induction

Theorem: Every Y has quality Z.

Let x be an arbitrary Y.
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2% has quality Z. Because x was an arbitrary Y, every Y has quality Z.
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Proof by induction that all DAGs have a topological ordering
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Your turn

A binary tree is a rooted tree in which each node has at most two children. Show
by induction that in any binary tree the number of nodes with two children is
exactly one less than the number of leaves.

DO NOT PROVE IT! Write the boilerplate. C}/

Theorem: Every Y has quality Z.
Let x be an arbitrary Y. C{ @QW T

Suppose that for all w less than x, quality Z holds. NOLes
o
There are (at least two) cases: ,
o | Cliletrey
Case 1: non inductive case, aka base case. can prove directly that theorem holds.
(but there could be more than one of these!)
Case 2: inductive case. need to use inductive hypothesis to show that theorem
holds. (but there could be more than one of these!)

X has quality Z. Because x was an arbitrary Y, every Y has quality Z.
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Your turn
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Theorem: Every Y has quality Z.
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There are (at least two) cases: 5>

Case 1: non inductive case, aka base case. can prove directly that theorem holds.
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(but there could be more than one of these!

Case 2: inductive case. need to use inductive hypothesis to show that theorem
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X has quality Z. Because x was an arbitrary Y, every Y has quality Z.
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