
Name

CSCI 332, Fall 2024

Exam 2

Note that this exam has four sections. The first section covers algorithm analysis
(20 points), the second section covers greedy algorithms (20 points), the third section
covers divide and conquer algorithms (20 points), and the fourth section covers dynamic
programming algorithms (20 points). If you need more space, develop your solution on
scratch paper before copying your final answer to the exam paper.

Good luck!

1



Section 1 (Algorithm Analysis)

1. (5 points) Take the following list of functions and arrange them in ascending order of
growth rate. That is, if function g(n) follows function f(n) in your list, then it should
be the case that f(n) is O(g(n)).

• f1(n) = 3
√
n (third root of n)

• f2(n) =
n!
n (n factorial divided by n)

• f3(n) = n log2 n (n times log base two of n)

• f4(n) = 3n (3 times n)

• f5(n) = log2 n (log base 2 of n)

2. (5 points) Suppose you know that an algorithm has a worst-case runtime that is
O(n2 log n). For each of the following, decide whether it is definitely true, definitely
false, or could be true or false and circle your choice.

• The algorithm’s worst-case runtime is Ω(n2). T, F, T or F

• The algorithm’s worst-case runtime is Ω(n3). T, F, T or F

• The algorithm’s best-case runtime is O(n2). T, F, T or F

• The algorithm’s worst-case runtime is O(n3). T, F, T or F

• The algorithm’s worst-case runtime is Θ(n2 log n). T, F, T or F

2



The 1-dimensional closest points problem takes in an array of values and looks for
the distance between the two closest values in the array. For example, the array
[7, 0,−10,−8, 4, 9], contains values 7 and 4, which differ by 3. There is no other pair
of values in the array that are closer, so the answer to the 1-dimensional closest points
problem on this input is 3. We will assume that our array indices start at 1 for this
problem.

1D-ClosestPoints(array A of length n indexed starting at 1):
Let min = ∞
For i in 1 to n:

For j in 1 to n:
If i ̸= j:

If |A[i]−A[j]| < min:
min = |A[i]−A[j]|

Return min

3. (2 points) Describe a worst-case input of size n for 1D-ClosestPoints.

4. (3 points) Give a function f(n) such that the worst-case runtime of 1D-ClosestPoints
is Θ(f(n)).

Your friend notices that 1D-ClosestPoints unnecessarily compares all values in A twice
and propopses the following algorithm instead.

1D-ClosestPoints-Improved(array A of length n):
Let min = ∞
For i in 1 to n:

For j in i+ 1 to n:
If |A[i]−A[j]| < min:

min = |A[i]−A[j]|
Return min

5. (5 points) Give a function g(n) such that the worst-case runtime of 1D-ClosestPoints-
Improved is Θ(g(n)).

3



Section 2 (Greedy Algorithms)

Suppose that you will drive your car for a long trip between New York City and San
Francisco along a pre-specified path. In preparation for your trip, you have downloaded
a map that contains the distances in miles between all the gas stations in your route.
Assume that your car’s gas tank, when full, holds enough gas to travel n miles. Assume
that the value n is given, and that you want to make the minimum number of stops
possible along the way, without running out of gas at any point. Your friend proposes
a greedy algorithm for selecting which gas stations to stop at:

• Start your trip with a full tank.

• Check your map to determine the farthest away gas station in your route within
n miles.

• at that gas station, fill up your tank and check your map again to determine the
farthest away gas station in your route within n miles from this stop.

• Repeat the process until you get to San Francisco.

Let sg(j) denote the station where we make the jth stop for the greedy algorithm. For
example, if sg(2) = 7 it means that we make the 2nd stop at the 7th gas station. Let
sO(j) be the index of the gas station for the jth stop for an optimal solution to the
problem.

We know that if we can prove that the greedy algorithm “stays ahead” of the optimal,
then we can prove that the greedy algorithm is, in fact, optimal.

6. (2 points) In words, what would it mean for the greedy algorithm to stay ahead of the
optimal solution for this problem? (Your answer should probably use the phrase “gas
station” at least once.)

7. (12 points) Fill in the blanks.

We prove that that the greedy algorithm stays ahead using induction. Suppose that
the greedy algorithm uses k stops and the optimal solution uses m stops. By definition
k ≤ m.

Claim 1. For all r ≤ k, we have .

Proof: Let r ≤ k.

Assume that .
(This is the inductive hypothesis, IH.)

There are two cases:

4



If r = 1, we know that because the greedy algorithm
chooses the farthest possible gas station for the first stop, so the optimal solution
cannot use a closer gas station.

If r > 1, we know by the IH that . We want to show
that the next gas station chosen by the greedy algorithm must be farther along than
the next gas station in the optimal solution. By definition, the greedy algorithm picks
the farthest gas station within n miles of sg(r − 1). Since sO(r − 1) ≤ sg(r − 1), it
must be that .

Because the claim is true in all cases, it holds for all r ≤ k. □

Dijkstra’s algorithm uses a greedy approach to compute the shortest distance from
some node v to all other nodes in the graph.

Suppose that you only want the distance from v to some specific node u. Your friend
proposes the following algorithm to find the shortest path from node u to node v,
based on Dijkstra’s algorithm.

Shortest Path(directed graph G with positive weights on edges, start node v, end node u):
Let P be an empty list to hold the chosen path
Let x be the current node and set x = v
While current node x is not equal to u:

Choose the edge leaving x with smallest edge weight; call its endpoint y
Add y to P
x = y

Return P

8. (6 points) Either briefly explain why this algorithm successfully finds the shortest path
from v to u on all valid input graphs, or give an example where it fails to find the
shortest path.

5



Section 3 (Divide and Conquer)

Recall the 1-dimensional closest points problem from Section 1. Previously, you saw
two iterative algorithms for that problem. You will now work to give a divide and
conquer algorithm for it.

You notice that if you divide the array into the first half A and the second half B,
then the minimum distance between points can come from three places:

• Pairs in A

• Pairs in B

• Pairs where one value comes from A and one value comes from B.

Just as in the significant inversions problem, you notice that you can calculate the
minimum distance between pairs where one value comes from A and one value comes
from B while you perform a merge of two sorted arrays.

Merge-and-Min-Distance(sorted arrays A and B of length n):
Let C be an empty array (to store the final sorted array)
Let pointers a1 and b1 be pointers to first element of A and B, respectively
Let min = ∞ (to store the final minimum distance)
While i, j ≤ n:

If ai < bj
Append ai to C
If distance between ai and bj less than min, update min accordingly.
Move ai to ai+1

Else:
Append bj to C
If distance between ai and bj less than min, update min accordingly.
Move bj to bj+1

Return C, min

2 9 12 25 -4 -1 8 15

-4

a1 b1

Left half, A Right half, B

9. (3 points) After the first iteration of the while loop in Merge-and-Min-Distance on A
and B above, min=6.

Fill in the values that min has after the remaining 7 iterations. You may use the blank
array above to help in your calculations if it is useful to you.

min=6, min= , min= , min= , min= , min= , min= , min= .

6



10. (7 points) Notice that Merge-and-Min-Distance takes Θ(n) time on an A, B of length
n. Fill in the rest of a recursive algorithm to compute the minimum distance between
two points in an array of length n. Your algorithm should take O(n log n) time on a
length n array, should call Merge-and-Min-Distance, and should be recursive (that is,
it should call itself at least once).

1D-ClosestPoints-Recursive(array A of length n):

7



Consider the recursion tree below, which represents the recursive calls (each node) and
size of the input to the recursive calls (text inside each node).

In general, we can write a recurrence relation as

T (n) = aT (n/b) + f(n)

where T (n) is the runtime of the algorithm on an input of size n and f(n) is the
non-recursive part of the algorithm (i.e., any preprocessing before or postprocessing
after the recursive call(s)).

11. (3 points) What are a and b for this recurrence relation?

12. (3 points) What is the depth of the recursion tree, as a function of n?

13. (4 points) Assume that f(n) = n2. At the following levels of the recursion tree, how
many computations are being done over all calls at that level?

(i) Level 0

(ii) Level 1

(iii) Level 2

(iv) Level 3

8



Section 4 (Dynamic Programming)

As snow piles up in the mountains (at least somewhere), you are thinking about ski
season. You would like to be able to choose a route through a given ski jumping
course that allows for the maximum total distance in the air. The input to your
problem is a set of n jumps at positions s1, s2, . . . , sn on the slope along with jump
distances d1, d2, . . . , dn which indicate how far each jump will send you. Some jumps
may launch you over other jumps, but you can assume that you can always land safely
and complete the next jump. You can also choose to skip a jump if doing so will allow
you to take other jumps that give you more air.

14. (4 points) Suppose that the input is (in meters) s1 = 100, s2 = 150, s3 = 200, s4 =
300, s5 = 350 and d1 = 60, d2 = 10, d3 = 70, d4 = 110, d5 = 30. What is the optimal
set of jumps, and what is your total air distance?

15. (6 points) For many dynamic programming problems, we have defined a value p(j) for
each input element j. We would like to define a similar value for this problem. In
words, what does p(j) mean for the ski jump problem? After defining it, compute
p(1), p(2), p(3), p(4) and p(5) for the instance from (a).

9



16. (4 points) Give a recurrence relation for the maximum air distance.

OPT (j) =

{
if j = 0

if j > 1.

17. (4 points) Give a polynomial time, recursive algorithm to compute the weight of the
heaviest squared independent set using your recurrence relation above. You should fill
in the following two functions so that Max Jump Distance returns the longest total
jump distance over any set of compatible jumps in the input.

Max Jump Distance(s1, s2, . . . , sn, d1, d2, . . . , dn):

Compute OPT(j):

18. (2 points) Analyze the runtime of your algorithm. That is, give a function f(n) such
that the worst-case runtime of Max Jump Distance on an input of size n is Θ(f(n)).

10


