Name

CSCI 332, Fall 2024
Exam 2—Practice 2

Note that this exam has four sections. The first section covers algorithm analysis
(20 points), the second section covers greedy algorithms (20 points), the third section
covers divide and conquer algorithms (20 points), and the fourth section covers dynamic
programming algorithms (20 points). If you need more space, develop your solution on
scratch paper before copying your final answer to the exam paper.

Good luck!

Section 1 (Algorithm Analysis)

1. (5 points) Take the following list of functions and arrange them in ascending order of
growth rate. That is, if function g(n) follows function f(n) in your list, then it should
be the case that f(n) is O(g(n)).

e fi(n) =n! (n factorial)

e fo(n) =n? (n squared)

e f3(n) = 2™ (2 to the power of n factorial)

e fi(n) = 23n (two to the power of 3 times n)
e f5(n) = log, n? (log base 2 of n squared)

2. (5 points) Suppose you know that an algorithm has a worst-case runtime that is Q(n).
For each of the following, decide whether it is definitely true, definitely false, or could
be true or false and circle your choice.

e The algorithm’s best-case runtime is Q(logn). T, F, T or F

The algorithm’s best-case runtime is (nlogn). T, F, T or F

The algorithm’s worst-case runtime is O(n?). T, F, T or F

The algorithm’s worst-case runtime is O(n). T, F, T or F

The algorithm’s worst-case runtime is Q(logn). T, F, T or F

Recall Dijkstra’s algorithm to compute the shortest path distance from one node s to
all other nodes in a directed graph with non-negative edge weights:

Dijkstra(directed graph G = (V, F) with non-negative edge weights; node s)
Let S be the set of explored nodes
For each u € S, we store a distance d(u)
Initially S = {s} and d(s) =0
While S # V:
Select a node v ¢ S with at least one edge from S for which

dw) = (mi)n Sd(u) + /(. is as small as possible
e=(u,v):ue

Add v to S and define d(v) = d'(v)

3. (3 points) How many times ezactly does the while loop run? (This should be a function
of m, the number of edges, and/or n, the number of nodes.)

4. (3 points) Suppose that we implement the while loop naively by examining every v ¢ S,
computing min,_(y,y).ues d(u) + Le, and then using those values to find the next node
to add to S. Describe a a worst-case input for this implementation.

5. (4 points) Assuming this naive implementation of the while loop, give a f(n) such that
the worst-case runtime of Dijkstra’s algorithm on a graph with n nodes is O(f(n)).

Section 2 (Greedy Algorithms)

Dijkstra’s algorithm is copied here again for your convenience:

Dijkstra(directed graph G = (V, E') with non-negative edge weights; node s)
Let S be the set of explored nodes
For each u € S, we store a distance d(u)
Initially S = {s} and d(s) =0

While S # V:
Select a node v ¢ S with at least one edge from S for which
d'w) = (mi)n Sd(u) + £, is as small as possible
e=(u,v):ue

Add v to S and define d(v) = d'(v)

6. (20 points) Use the table below to trace through the execution of Dijkstra’s algorithm
on the following graph. Note that it continues on the next page! You may not need all
of the rows.

current S | current d(u) | all v ¢ S with at | values | v to add
values for least one edge | of d'(v) to S
ues from S

set up

while loop run 1

while loop run 2

current S

current d(u)
values for
ues

all v ¢ S with at
least one edge
from §

values

of d'(v)

v to add
to S

while loop run

while loop run

while loop run

while loop run

while loop run

while loop run

Section 3 (Divide and Conquer)

Consider the recursion tree below, which represents the recursive calls (each node) and
size of the input to the recursive calls (text inside each node).

In general, we can write a recurrence relation as
T(n) = aT(n/b) + f(n)
where T'(n) is the runtime of the algorithm on an input of size n and f(n) is the

non-recursive part of the algorithm (i.e., any preprocessing before or postprocessing
after the recursive call(s)).

7. (3 points) What are a and b for this recurrence relation?

8. (3 points) What is the depth of the recursion tree, as a function of n?

9. (4 points) Assume that f(n) = nlogn. At the following levels of the recursion tree,
how many computations are being done over all calls at that level?

(i) Level 0

(ii) Level 1

(iii) Level 2

(iv) Level 3

The pseudocode to binary search for the location after which to insert a new element ¢
into a sorted array A, indexed starting at 0, is shown below. You may assume that A
will always have at least one element.

Binary_Search(sorted array A, new element t):
min = 0
max = length of A -1
make A and ¢ global
return Binary_Search_Indices(min, max)

Binary_Search_Indices(index min, index max):
If mid = max:
If ¢t < Almin]:
Return min -1
Else:
Return min
Else:
mid = | min + max / 2 |
If ¢t < Almid]:
return Binary_Search_Indices(min, mid - 1)
Else

return Binary_Search_Indices(mid + 1, max)

10. (4 points) Suppose you have the length 16 array A = (with indices labeled above)

1 3 5 6 12 1 100 | 105 | 108 | 133 | 229 | 277 | 280 | 551 | 559 | 601 | 603

and new element ¢t = 295 and call Binary_Search(A,t). Exactly how many calls to
Binary_Search_Indices will be made? (You should give a number here.)

11. (3 points) What is the recurrence relation for the runtime of Binary_Search_Indices on
an array of length n?

T(n):{l ifn =1

ifn>1.

12. (3 points) What is the worst-case runtime of Binary_Search given above?

13.

Section 4 (Dynamic Programming)

Suppose that you are the booking agent for breakout pop star Temple Raye. The
possible gigs that you are considering can be divided into arena venues or club venues,
and you have the option of booking an arena or a club every weekend. Arenas generally
pay much more than clubs. However, the prep time for an arena show is longer. In
particular, if you schedule Temple to play an arena, she can’t play any concert (arena
or club) the previous weekend. On the other hand, if you schedule her in a club, it’s
okay if she plays in arena or a club the weekend before.

Given a sequence of n weekends, a plan is a choice of club, arena, or none for the gigs
for each of the n weekends. A plan is only valid if, for any weekend where an arena is
chosen, none is chosen for the previous weekend. The revenue from the plan is the
sum of the revenues from the chosen gigs. (Choosing none adds $0 to the revenue.)
Your goal is to find an optimal plan—that is, one that is both valid and has maximal
revenue.

For weekend 7, we write ¢; to mean the revenue from the club show that you can book
that weekend, and a; to mean the revenue from the arena show you can book that
weekend.

Here is an example input to the problem.

weekendl | weekend2 | weekend3 | weekend4 | weekend5b
c 10 8 2 10 24
a 11 100 40 5 50

So, for this example, co is 8 and a4 is 5. An optimal plan for this input is to choose
no show for weekend 1, the arena show for weekend 2, the club show for weekend
3, no show for weekend 4, and arena show for weekend 5, with a total revenue of
0+4+a2+c3+0+a5=0+4+1004 2+ 0+ 50 = 152.

(6 points) Give a recurrence relation for the revenue from the best possible concert
schedule up to week j.

if =0
OPT(j) = ifj=1
if j>1.

14. (7 points) Give a polynomial time, recursive algorithm to compute the revenue of the
best possible concert schedule using your recurrence relation above. You should fill in
the following two functions so that Max_Revenue returns the maximum revenue of the
best possible concert schedule.

Max_Revenue(ay, ag, ..., Qn, C1,C2, .., Cp):

Compute_OPT(5):

10

15. (3 points) Fill in the rest of a recursive algorithm to find the optimal set of gigs to
choose, given a full set of OPT values for j = 0 through j = n.

Nodes(j):

11

