Order the following functions from asymptotically smallest to asymptotically largest. If two functions are asymptotically equal (one is Θ of the other), indicate this with an equals sign. For example, if the functions were n, n^2 , and 3n + 4, the answer would be $n = 3n + 4 < n^2$. 3ⁿ 100'00 = 2 (0924 CM 650/2) • 501n² G=0.5n2-50n <3h <5h log₂ n 100¹⁰⁰! • $0.5n^2 - 50n$

1. (4 pomis)

2. (4 points) For each of the following choices of n_0 , c indicate whether they could be used to to prove that $3n^2 + 3$ is $O(n^2)$. 4nzno: +(n) < cq(n) (a) $c = 1, n_0 = 3$. Yes or no? (b) c = 4, $n_0 = 0$. Yes or no?

 $\Theta(n^2)$ $3^h \neq \Theta(5^n)$

(a)
$$c = 1$$
, $n_0 = 0$. Yes or no?
(b) $c = 4$, $n_0 = 0$. Yes or no?
(c) $c = 4$, $n_0 = 10$. Yes or no?
(d) $c = 4$, $n_0 = 0$. Yes or no?
 $c = 4$, $n_0 = 0$. Yes or no?
 $c = 4$, $n_0 = 0$. Yes or no?
 $c = 4$, $n_0 = 0$. Yes or no?
 $c = 4$, $n_0 = 0$. Yes or no?
 $c = 4$, $n_0 = 0$. Yes or no?
 $c = 4$, $n_0 = 0$. Yes or no?

3. (3 points) There is an algorithm with best-case runtime that is $\Omega(n^2)$ and worst-case runtime that is $\Omega(n)$. True or false? nest-case INGRY-case

Undinected Graphs G = (V, E) Set of set of eages vernus vodes N= {1,2,3,4,5,6,7, 8,9,10,11,12,133 E={{1,2}, {1,3}, 22,33, -- - 3 111 = 13 15/-14 {5,83 ∈ E ? A pam in G= (V, E) is a segmence of hodes V, Vz, ... Vx with the property that each consecutive pair Vi-, Vi is joined by a different edges. 15 1.,3,7,8,9,00 a patr. a pan! 15 1/2,3,1,2

A simple patro has no repeated nodes. A graph is connected if there is a pain of nodes. now fast: $\Omega(N)$ 3FS ... A cycle is a path V, vz, ·· , Ve in unich v, = Ve. and kzz A cycle is simple if all its hodes distinct. (except 1st, last) €7,73€€ Same as 2, 1,5,3,1,2 (= 1,2,4,5,3,1

now many simple cycles in G?