1. (4 points) What are the layers produced by BFS on the following graph starting from node? If a layer is not present, leave it blank.

2. (3 points) For each of the following orderings of the vertices of the graph below, indicate whether or not it is a valid topological ordering.

(a) 0,1,2,3,4,5,6,7,8. Yes or no? (b) 7,2,4,3,1,6,5,0,8. Yes or no? (c) 7,2,4,3,6,5,1,0,8. Yes or no?

3. (4 points) Order the following statements from 1 to 9 to produce a proof of the following statement: <i>If G is a DAG, then G has a node with no incoming edges.</i>
$\overline{1}$ Because there is a cycle in G , we have a contradiction with the assumption that G is a
DAG. $\underline{\ }$ Since v_0 has an entering edge, we can follow it backwards to v_1 .
2 Let G be such a DAG where every node has at least one incoming edge.
$\frac{2}{3}$ Start at any node v_0 in G .
Since v_1 has an entering edge, we can follow it backwards to v_2 .
Since there are only n nodes, after $n + 1$ steps we must have visited a node more than once.
Since every node has an entering edge, we can follow this process indefinitely.
Tor the sake of contradiction, assume that not every DAG has a node with no incoming
edge.
This produces a cycle.
For me sake of contradiction, assume
mat not every DAG has a node w/
no intorning edges.
let G be soon a DAG uneve every
node has at least one incoming edge.
Start at any node vo in G.
Since vo has an enterme eage,
Tollow bacobassis
Since U, has enterney edge, on
6100 10 V2
$(\overrightarrow{V_2})$
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Every DAG has at least one node w/ no incoming How can you use Claim above to unte an alg. For topo soft on a DAG? 1000504 (DAG G): unile nodes in G: find a node w/ no incoming put it in topo order