
INSTRUCTOR: LUCIA WILLIAMS

CSCI 332: ADVANCED
ALGORITHMS & DATA

STRUCTURES

‣What you’d like to be called
‣Your hometown
‣Your pronouns
‣Your major/concentration
‣A fun fact about you

After you sit down, please fold your paper hot dog style and write:

Introduce yourself to your neighbors!

Algorithm definition

2

Algorithm definition

2

“ An algorithm is a finite, definite, effective procedure,

 with some input and some output. ”

 — Donald Knuth

But…

3

But…

3

“Algorithmic problems form the heart of computer science, but

they rarely arrive as cleanly packaged, mathematically precise

questions. Rather, they tend to come bundled together with lots of

messy, application-specific detail, some of it essential, some of it

extraneous.”

 — Kleinberg & Tardos

CSCI 232 vs. CSCI 332

4

What were the focuses of CSCI 232?

CSCI 232 vs. CSCI 332

5

CSCI 232 vs. CSCI 332

CSCI 232. Implementation and consumption of classic algorithms.

5

CSCI 232 vs. CSCI 332

CSCI 232. Implementation and consumption of classic algorithms.
・Fundamental data structures (arrays, stacks, queues, etc.).

5

CSCI 232 vs. CSCI 332

CSCI 232. Implementation and consumption of classic algorithms.
・Fundamental data structures (arrays, stacks, queues, etc.).
・Sorting.

5

CSCI 232 vs. CSCI 332

CSCI 232. Implementation and consumption of classic algorithms.
・Fundamental data structures (arrays, stacks, queues, etc.).
・Sorting.
・Searching.

5

CSCI 232 vs. CSCI 332

CSCI 232. Implementation and consumption of classic algorithms.
・Fundamental data structures (arrays, stacks, queues, etc.).
・Sorting.
・Searching.
・Graph algorithms.

5

CSCI 232 vs. CSCI 332

CSCI 232. Implementation and consumption of classic algorithms.
・Fundamental data structures (arrays, stacks, queues, etc.).
・Sorting.
・Searching.
・Graph algorithms.
・String processing.

5

CSCI 232 vs. CSCI 332

CSCI 232. Implementation and consumption of classic algorithms.
・Fundamental data structures (arrays, stacks, queues, etc.).
・Sorting.
・Searching.
・Graph algorithms.
・String processing.
・Compression. 

 
 
 
 
 
 
 
 
Emphasizes critical thinking, problem-solving, and code.

5

private static void sort(double[] a, int lo, int hi) {

 if (hi <= lo) return;

 int lt = lo, gt = hi;

 int i = lo;

 while (i <= gt) {

 if (a[i] < a[lo]) swap(a, lt++, i++);

 else if (a[i] > a[lo]) swap(a, i, gt--);

 else i++;

 }

 sort(a, lo, lt - 1);

 sort(a, gt + 1, hi);

}

CSCI 232 vs. CSCI 332

CSCI 332. Design and analysis of algorithms.

6

CSCI 232 vs. CSCI 332

CSCI 332. Design and analysis of algorithms.
• translate natural-language descriptions of computational problems into precisely

formulated computational problems

6

CSCI 232 vs. CSCI 332

CSCI 332. Design and analysis of algorithms.
• translate natural-language descriptions of computational problems into precisely

formulated computational problems
• recognize various real-world computational problems as instances of known

computational problems

6

CSCI 232 vs. CSCI 332

CSCI 332. Design and analysis of algorithms.
• translate natural-language descriptions of computational problems into precisely

formulated computational problems
• recognize various real-world computational problems as instances of known

computational problems
• identify valid inputs and correct outputs to computational problems

6

CSCI 232 vs. CSCI 332

CSCI 332. Design and analysis of algorithms.
• translate natural-language descriptions of computational problems into precisely

formulated computational problems
• recognize various real-world computational problems as instances of known

computational problems
• identify valid inputs and correct outputs to computational problems
• trace through algorithm execution

6

CSCI 232 vs. CSCI 332

CSCI 332. Design and analysis of algorithms.
• translate natural-language descriptions of computational problems into precisely

formulated computational problems
• recognize various real-world computational problems as instances of known

computational problems
• identify valid inputs and correct outputs to computational problems
• trace through algorithm execution
• argue the correctness of an algorithm using a variety of proof techniques (direct

proof, proof by induction, etc.)

6

CSCI 232 vs. CSCI 332

CSCI 332. Design and analysis of algorithms.
• translate natural-language descriptions of computational problems into precisely

formulated computational problems
• recognize various real-world computational problems as instances of known

computational problems
• identify valid inputs and correct outputs to computational problems
• trace through algorithm execution
• argue the correctness of an algorithm using a variety of proof techniques (direct

proof, proof by induction, etc.)
• give counterexamples showing that an algorithm is incorrect

6

CSCI 232 vs. CSCI 332

CSCI 332. Design and analysis of algorithms.
• translate natural-language descriptions of computational problems into precisely

formulated computational problems
• recognize various real-world computational problems as instances of known

computational problems
• identify valid inputs and correct outputs to computational problems
• trace through algorithm execution
• argue the correctness of an algorithm using a variety of proof techniques (direct

proof, proof by induction, etc.)
• give counterexamples showing that an algorithm is incorrect
• correctly describe an algorithm’s runtime from a variety of practical viewpoints

6

CSCI 232 vs. CSCI 332

CSCI 332. Design and analysis of algorithms.
• translate natural-language descriptions of computational problems into precisely

formulated computational problems
• recognize various real-world computational problems as instances of known

computational problems
• identify valid inputs and correct outputs to computational problems
• trace through algorithm execution
• argue the correctness of an algorithm using a variety of proof techniques (direct

proof, proof by induction, etc.)
• give counterexamples showing that an algorithm is incorrect
• correctly describe an algorithm’s runtime from a variety of practical viewpoints

6

CSCI 232 vs. CSCI 332

CSCI 332. Design and analysis of algorithms.
• translate natural-language descriptions of computational problems into precisely

formulated computational problems
• recognize various real-world computational problems as instances of known

computational problems
• identify valid inputs and correct outputs to computational problems
• trace through algorithm execution
• argue the correctness of an algorithm using a variety of proof techniques (direct

proof, proof by induction, etc.)
• give counterexamples showing that an algorithm is incorrect
• correctly describe an algorithm’s runtime from a variety of practical viewpoints

6

CSCI 232 vs. CSCI 332

CSCI 332. Design and analysis of algorithms.
• translate natural-language descriptions of computational problems into precisely

formulated computational problems
• recognize various real-world computational problems as instances of known

computational problems
• identify valid inputs and correct outputs to computational problems
• trace through algorithm execution
• argue the correctness of an algorithm using a variety of proof techniques (direct

proof, proof by induction, etc.)
• give counterexamples showing that an algorithm is incorrect
• correctly describe an algorithm’s runtime from a variety of practical viewpoints

6

n�

i=1

n�

j=i+1

2

j � i � 1
= 2

n�

i=1

n�i+1�

j=2

1

j

� 2n
n�

j=1

1

j

� 2n

� n

x=1

1

x
dx

= 2n ln n

CSCI 232 vs. CSCI 332

CSCI 332. Design and analysis of algorithms.
• translate natural-language descriptions of computational problems into precisely

formulated computational problems
• recognize various real-world computational problems as instances of known

computational problems
• identify valid inputs and correct outputs to computational problems
• trace through algorithm execution
• argue the correctness of an algorithm using a variety of proof techniques (direct

proof, proof by induction, etc.)
• give counterexamples showing that an algorithm is incorrect
• correctly describe an algorithm’s runtime from a variety of practical viewpoints

7

 
Emphasizes critical thinking, problem-solving, and
both open-ended problems and rigorous analysis.

CSCI 232 vs. CSCI 332

CSCI 332. Design and analysis of algorithms.
• translate natural-language descriptions of computational problems into precisely

formulated computational problems
• recognize various real-world computational problems as instances of known

computational problems
• identify valid inputs and correct outputs to computational problems
• trace through algorithm execution
• argue the correctness of an algorithm using a variety of proof techniques (direct

proof, proof by induction, etc.)
• give counterexamples showing that an algorithm is incorrect
• correctly describe an algorithm’s runtime from a variety of practical viewpoints

7

n�

i=1

n�

j=i+1

2

j � i � 1
= 2

n�

i=1

n�i+1�

j=2

1

j

� 2n
n�

j=1

1

j

� 2n

� n

x=1

1

x
dx

= 2n ln n

 
Emphasizes critical thinking, problem-solving, and
both open-ended problems and rigorous analysis.

Why study algorithms?

8

“ Algorithms are the life-blood of computer science…

 the common denominator that underlies and unifies the

 different branches. ” — Donald Knuth

Course logistics

In table groups, try to complete the syllabus quiz. Some of the questions are open-
ended and may not have one single answer!

If your group comes up with a question you can’t answer (not necessarily one on the
quiz), post it in #questions in Discord.

9

Matching med-school students to hospitals

How to match? What should we think about when designing an algorithm for this
problem?

10

Matching med-school students to hospitals

Input: a set of preferences among hospitals and med-school students

11

favorite

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

hospitals’ preference lists

least favorite favorite

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

students’ preference lists

least favorite

Matching med-school students to hospitals

Input: a set of preferences among hospitals and med-school students

12

favorite

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

hospitals’ preference lists

least favorite favorite

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

students’ preference lists

least favorite

Output: a (perfect) matching of hospitals to students…

Matching med-school students to hospitals

Input: a set of preferences among hospitals and med-school students

13

favorite

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

hospitals’ preference lists

least favorite favorite

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

students’ preference lists

least favorite

Output: a (perfect) matching of hospitals to students…

{ Atlanta–Zeus, Boston-Yolanda, Chicago-Xavier }

Matching med-school students to hospitals

Input: a set of preferences among hospitals and med-school students

14

favorite

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

hospitals’ preference lists

least favorite favorite

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

students’ preference lists

least favorite

Output: a (perfect) matching of hospitals to students…

{ Atlanta–Zeus, Boston-Yolanda, Chicago-Xavier }

…that is self-reinforcing: no mutually beneficial side deals!

Matching med-school students to hospitals

Input: a set of preferences among hospitals and med-school students

15

favorite

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

hospitals’ preference lists

least favorite favorite

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

students’ preference lists

least favorite

Output: a (perfect) matching of hospitals to students…

{ Atlanta–Zeus, Boston-Yolanda, Chicago-Xavier }

…that is self-reinforcing: no mutually beneficial side deals!

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

With your table: can any hospitals/students
that are not currently matched make a

mutually beneficial deal?

Matching med-school students to hospitals

Input: a set of preferences among hospitals and med-school students

16

favorite

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

hospitals’ preference lists

least favorite favorite

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

students’ preference lists

least favorite

Output: a (perfect) matching of hospitals to students…

{ Atlanta–Zeus, Boston-Yolanda, Chicago-Xavier }

…that is self-reinforcing: no mutually beneficial side deals!

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

With your table: can any hospitals/students
that are not currently matched make a

mutually beneficial deal?

On your syllabus quiz, tally up how many at
your table think:
1) a stable matching always exists
2) there is an optimally efficient algorithm for

this problem

