
Models of Computation Lecture 3: Finite-State Machines [F23]

Life only avails, not the having lived. Power ceases in the instant of repose;
it resides in the moment of transition from a past to a new state,
in the shooting of the gulf, in the darting to an aim.

— Ralph Waldo Emerson, “Self Reliance”, Essays, First Series (1841)

O Marvelous! what new configuration will come next?
I am bewildered with multiplicity.

— William Carlos Williams, “At Dawn” (1914)

3 Finite-State Machines

3.1 Intuition

Suppose we want to determine whether a given string w[1 .. n] of bits represents a multiple of 5
in binary. After a bit of thought, you might realize that you can read the bits in w one at a time,
from left to right, keeping track of the value modulo 5 of the prefix you have read so far.

MultipleOf5(w[1 .. n]):
rem← 0
for i← 1 to n

rem← (2 · rem+w[i])mod 5

if rem= 0
return True

else
return False

Aside from the loop index i, which we need just to read the entire input string, this algorithm
has a single local variable rem, which has only four different values: 0, 1, 2, 3, or 4.

For example, given the 11-bit input string 00101110110, your algorithm proceeds as follows,
eventually returning False. For purposes of illustration, I’m including the actual binary value of
the prefix read so far, without any modular arithmetic. The algorithm does not actually maintain
this value, only its remainder rem= value mod 5.

i w[1 .. i] value rem
0 ϵ 0 0
1 0 0 0
2 00 0 0
3 001 1 1
4 0010 2 2
5 00101 5 0
6 001011 11 1
7 0010111 23 3
8 00101110 46 1
9 001011101 93 3
10 0010111011 187 2
11 00101110110 374 4

© Copyright 2023 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

Models of Computation Lecture 3: Finite-State Machines [F23]

This algorithm already runs in O(n) time, which is the best we can hope for—after all, we
have to read every bit in the input—but we can speed up the algorithm in practice. Let’s define a
change or transition function δ : {0,1, 2,3, 4} × {0,1} → {0,1, 2,3, 4} as follows:

δ(q, a) = (2q+ a)mod 5.

(Here I’m implicitly converting the symbols 0 and 1 to the corresponding integers 0 and 1.) Since
we already know all values of the transition function, we can store them in a precomputed table,
and then replace the computation in the main loop of MultipleOf5 with a simple array lookup.

We can also modify the return condition to check for different values modulo 5. To be
completely general, we replace the final if-then-else lines with another array lookup, using an
array A[0 .. 4] of booleans describing which final mod-5 values are “acceptable”.

After both of these modifications, our algorithm looks like one of the following, depending on
whether we want something iterative or recursive (with q = 0 in the initial call):

DoSomethingCool():
q← 0
while not done:

a← next input bit
q← δ[q, a]

return A[q]

DoSomethingCool(q, w):
if w= ϵ

return A[q]
else

decompose w= a · x
return DoSomethingCool(δ(q, a), x)

If we want to use our new DoSomethingCool algorithm to implement MultipleOf5, we
can give the arrays δ and A the following hard-coded values:

q δ[q,0] δ[q,1] A[q]
0 0 1 True
1 2 3 False
2 4 0 False
3 1 2 False
4 3 4 False

We can also visualize the behavior of DoSomethingCool by drawing a directed graph, whose
vertices represent possible values of the variable q—the possible states of the algorithm—and
whose edges are labeled with input symbols to represent transitions between states. Specifically,
the graph includes the labeled directed edge p

a
−→q if and only if δ(p, a) = q. To indicate the

proper return value, we draw the “acceptable” final states using doubled circles. Here is the
resulting graph for MultipleOf5:

0

1 1

1

1

0

0

0

0

1

1

0

2

3

4

State-transition graph for MultipleOf5

2

Models of Computation Lecture 3: Finite-State Machines [F23]

Again, if we run the MultipleOf5 algorithm on the string 00101110110 (representing the
number 374 in binary), the algorithm performs the following sequence of transitions:

0
0
−→ 0

0
−→ 0

1
−→ 1

0
−→ 2

1
−→ 0

1
−→ 1

1
−→ 3

0
−→ 1

1
−→ 3

1
−→ 2

0
−→ 4

Because the final state is not the “acceptable” state 0, the algorithm correctly returns False.
We can also think of this sequence of transitions as a walk in the graph, which is completely
determined by the start state 0 and the sequence of edge labels; the algorithm returns True if
and only if this walk ends at an “acceptable” state.

ÆÆÆ Here’s another bit of intuition that might be closer to Kleene’s.
Consider the regular sequences of events that can be produced by a structured piece of code:

sequencing = concatenation, branching = alternation, looping = Kleene closure. We can model the
code as a directed graph, whose nodes correspond to points in the code (“states”), where the edges
(“transitions”) leaving each node are labeled by events caused by executing that line of code. (For
example: read, write, math, successful comparison, unsuccessful comparison, return.) Walking
through the graph produces a regular language of event streams. Turning that process on its head, if
we’re given an event stream, we can check whether a given piece of code could produce it by walking
through the graph.

Kleene’s insight is that allowing arbitrary transition graphs does not let us capture more languages
than insisting on structured graphs. In short, gotos and exceptions are unnecessary!

3.2 Formal Definitions

The object we have just described is an example of a finite-state machine. A finite-state machine
is a formal model of any system/machine/algorithm that can exist in a finite number of states
and that transitions among those states based on sequence of input symbols.

Finite-state machines are also known as deterministic finite-state automata, abbreviated
DFAs. The word “deterministic” means that the behavior of the machine is completely determined
by the input string; we’ll discuss nondeterministic automata in the next lecture. The word
“automaton” (the singular of “automata”) comes from ancient Greek αὐτόματος meaning “self-
acting”, from the roots αὐτό- (“self”) and -ματος (“thinking, willing”, the root of Latin mentus).

Formally, every finite-state machine consists of five components:

• An arbitrary finite set Σ, called the input alphabet.

• Another arbitrary finite set Q, whose elements are called states.1

• An arbitrary transition function δ : Q×Σ→Q.

• A start state s ∈Q.

• A subset A ⊆Q of accepting states.

1It’s unclear why we use the letter Q to refer to the state set, and lower-case q to refer to a generic state, but that
is now the firmly-established notational standard. Although the formal study of finite-state automata began much
earlier, its modern formulation was established in a 1959 paper by Michael Rabin and Dana Scott, for which they won
the Turing award. Rabin and Scott called the set of states S, used lower-case s for a generic state, and called the start
state s0. On the other hand, in the 1936 paper for which the Turing award was named, Alan Turing used q1, q2, . . . , qR

to refer to states (or “m-configurations”) of a generic Turing machine. Turing may have been mirroring the standard
notation Q for configuration (or “qonfiguration”) spaces in classical mechanics, also of uncertain origin.

3

Models of Computation Lecture 3: Finite-State Machines [F23]

The behavior of a finite-state machine is governed by an input string w, which is a finite
sequence of symbols from the input alphabet Σ. The machine reads the symbols in w one at a
time in order (from left to right). At all times, the machine has a current state q; initially q is
the machine’s start state s. Each time the machine reads a symbol a from the input string, its
current state transitions from q to δ(q, a). After all the characters have been read, the machine
accepts w if the current state is in A and rejects w otherwise. In other words, every finite state
machine runs the algorithm DoSomethingCool!

More formally, for any any finite-state machine, we can recursively extend the transition
functionδ : Q×Σ→Q, which transitions on symbols, to a functionδ∗ : Q×Σ∗→Q that transitions
on strings:

δ∗(q, w) :=

(

q if w= ϵ,

δ∗(δ(q, a), x) if w= ax .

Finally, a finite-state machine accepts a string w if and only if δ∗(s, w) ∈ A, and rejects w
otherwise. (Compare this definition with the recursive formulation of DoSomethingCool!)

For example, our final MultipleOf5 DFA has the following components:

• input alphabet Σ= {0,1}

• state set Q = {0, 1,2, 3,4}

• transition function δ(q, a) = (2q+ a)mod 5

• start state s = 0

• accepting states A= {0}

This machine rejects the string 00101110110, because

δ∗(0,00101110110) = δ∗(δ(0,0),0101110110)

= δ∗(0,0101110110) = δ∗(δ(0,0),101110110)

= δ∗(0,101110110) = δ∗(δ(0,1),01110110) = · · ·
...

· · ·= δ∗(1,110) = δ∗(δ(1,1),10)

= δ∗(3,10) = δ∗(δ(3,1),0)

= δ∗(2,0) = δ∗(δ(3,0),ϵ)

= δ∗(4,ϵ) = 4 ̸∈ A.

We have already seen a more graphical representation of this entire sequence of transitions:

0
0
−→ 0

0
−→ 0

1
−→ 1

0
−→ 2

1
−→ 0

1
−→ 1

1
−→ 3

0
−→ 1

1
−→ 3

1
−→ 2

0
−→ 4

The arrow notation is easier to read and write for specific examples, but surprisingly, most people
actually find the more formal functional notation easier to use in formal proofs. Try them both!

We can equivalently define a DFA as a directed graph whose vertices are the states Q, whose
edges are labeled with symbols from Σ, such that every vertex has exactly one outgoing edge
with each label. In our drawings of finite state machines, the start state s is always indicated
by an incoming arrow, and the accepting states A are always indicted by doubled circles. By
induction, for any string w ∈ Σ∗, this graph contains a unique walk that starts at s and whose

4

Models of Computation Lecture 3: Finite-State Machines [F23]

edges are labeled with the symbols in w in order. The machine accepts w if this walk ends at an
accepting state. This graphical formulation of DFAs is incredibly useful for developing intuition
and even designing DFAs. For proofs, it’s largely a matter of taste whether to write in terms of
extended transition functions or labeled graphs, but (as much as I wish otherwise) I actually find
it easier to write correct proofs using the functional formulation.

3.3 A Simpler Example

The following drawing shows a finite-state machine M with input alphabet Σ= {0,1}, state set
Q = {s, t}, start state s, a single accepting state t, and the transition function

δ(s,0) = s, δ(s,1) = t, δ(t,0) = t, δ(t,1) = s.

0 0
1

1
s t

A simple finite-state machine.

This machine accepts the string 00101110100 after the following sequence of transitions:

s
0
−→ s

0
−→ s

1
−→ t

0
−→ t

1
−→ s

1
−→ t

1
−→ s

0
−→ s

1
−→ t

0
−→ t

0
−→ t.

The same machine M rejects the string 11101101 after the following sequence of transitions:

s
1
−→ t

1
−→ s

1
−→ t

0
−→ t

1
−→ s

1
−→ t

0
−→ t

1
−→ s.

Finally, M rejects the empty string, because the start state s is not an accepting state.
From these examples and others, it is easy to conjecture that the language of M is the set of

all strings of 0s and 1s with an odd number of 1s. So let’s prove it!

Theorem 3.1. M accepts an arbitrary string w if and only if w contains an odd number of 1s.

Proof (tedious case analysis): Let #(a, w) denote the number of times symbol a appears in
string w. We need to prove that δ∗(t, w) = t if and only if #(1, w) is even. We will actually prove
the following stronger claims by mutual induction, for every string w.

δ∗(s, w) =

¨

s if #(1, w) is even
t if #(1, w) is odd

and δ∗(t, w) =

¨

t if #(1, w) is even
s if #(1, w) is odd

Let’s begin. Let w be an arbitrary string. Assume that for any string x that is shorter than w,
we have δ∗(s, x) = s and δ∗(t, x) = t if x has an even number of 1s, and δ∗(s, x) = t and
δ∗(t, x) = s if x has an odd number of 1s. There are five cases to consider.

• If w = ϵ, then w contains an even number of 1s and δ∗(s, w) = s and δ∗(t, w) = t by
definition.

5

Models of Computation Lecture 3: Finite-State Machines [F23]

• Suppose w= 1x and #(1, w) is even. Then #(1, x) is odd, which implies

δ∗(s, w) = δ∗(δ(s,1), x) by definition of δ∗

= δ∗(t, x) by definition of δ
= s by the inductive hypothesis

δ∗(t, w) = δ∗(δ(t,1), x) by definition of δ∗

= δ∗(s, x) by definition of δ
= t by the inductive hypothesis

Since the remaining cases are similar, I’ll omit the line-by-line justification.

• If w= 1x and #(1, w) is odd, then #(1, x) is even, so the inductive hypothesis implies

δ∗(s, w) = δ∗(δ(s,1), x) = δ∗(t, x) = t

δ∗(t, w) = δ∗(δ(t,1), x) = δ∗(s, x) = s

• If w= 0x and #(1, w) is even, then #(1, x) is even, so the inductive hypothesis implies

δ∗(s, w) = δ∗(δ(s,0), x) = δ∗(s, x) = s

δ∗(t, w) = δ∗(δ(t,0), x) = δ∗(t, x) = t

• Finally, if w = 0x and #(1, w) is odd, then #(1, x) is odd, so the inductive hypothesis
implies

δ∗(s, w) = δ∗(δ(s,0), x) = δ∗(s, x) = t

δ∗(t, w) = δ∗(δ(t,0), x) = δ∗(t, x) = s □

Notice that we are actually proving a stronger claim than the theorem statement. To
recursively argue about which strings lead the machine from the start state s to an accepting state,
we actually have to establish which strings lead from every state p to every state q (including
q = p). More formally, for every pair of states p and q, we must argue about the language of all
strings w such that δ∗(p, w) = q. Moreover, for each pair of states, our inductive argument must
consider all possible first symbols in the string w; moreover, for the cases where p = q, we must
consider the empty string q = ϵ.

We can use this same proof structure to prove that any DFA is correct, but the proof
will necessarily consider |Q|2 · |Σ|+ |Q| different cases. Each of those arguments is typically
straightforward, but it’s easy to get lost in the deluge of cases.

A Clever Proof

For this particular DFA, however, we can reduce the number of cases by renaming the states with
the integers 0 and 1 instead of s and t, and then describing the transition function as a single
arithmetic function instead of case-by-case.

δ(q, a) = (q+ a)mod 2

6

Models of Computation Lecture 3: Finite-State Machines [F23]

Theorem 3.2. M accepts an arbitrary string w if and only if w contains an odd number of 1s.

Proof (clever renaming): We need to prove that for every string w, we have δ∗(0, w) = 1 if and
only if #(1, w) is odd. In fact we will prove the stronger claim δ∗(q, w) = (q+#(1, w))mod 2
for every state q and every string w.

Let q be an arbitrary state, and let w be an arbitrary string. Assume that for any string x that
is shorter than w, and for every state p, that δ∗(p, x) = (p+#(1, x))mod 2. There are only two
cases to consider: Either w is empty or it isn’t.

• First suppose w= ϵ. Then we have

δ∗(q, w) = δ∗(q,ϵ) because w= ϵ

= q by definition of δ∗

= (q+ 0)mod 2 because either q = 0 or q = 1

= (q+#(1,ϵ))mod 2 by definition of #

= (q+#(1, w))mod 2 because w= ϵ

• Otherwise w= ax for some symbol a and some string x , and we have

δ∗(q, w) = δ∗(q, ax) because w= ax

= δ∗(δ(q, a), x) by definition of δ∗

= δ∗((q+ a)mod 2, x) by definition of δ
= ((q+ a)mod 2+#(1, x))mod 2 by the IH, with p = (q+ a)mod 2

= (q+ a+#(1, x))mod 2 modular arithmetic
= (q+#(1, ax))mod 2 by definition of #

= (q+#(1, w))mod 2 because w= ax

In both cases, we conclude that δ∗(q, w) = (q+#(1, w))mod 2. □
Hmmm. This “clever” proof is certainly shorter than the earlier brute-force proof, but is it

actually better? Easier to understand? In this simple case, maybe, but in general I’m skeptical.
Sometimes brute force really is more effective.

3.4 Real-World Examples

Finite-state machines were first formally defined in the mid-20th century, but people have been
building automata for centuries, if not millennia. Many of the earliest records about automata
are clearly mythological—for example, the brass giant Talus created by Hephaestus to guard
Crete against intruders—but others are more believable, such as King-Shu’s construction of a
flying magpie from wood and bamboo in China around 500bce.

Perhaps the most common examples of finite-state automata are clocks. For example, the
Swiss railway clock designed by Hans Hilfiker in 1944 has hour and minute hands that can
indicate any time between 1:00 and 12:59. The minute hands advance discretely once per minute
when they receive an electrical signal from a central master clock.2 Thus, a Swiss railway clock is

2A second hand was added to the Swiss Railway clocks in the mid-1950s, which sweeps continuously around the
clock in approximately 58½ seconds and then pauses at 12:00 until the next minute signal “to bring calm in the last
moment and ease punctual train departure”. Let’s ignore that.

7

Models of Computation Lecture 3: Finite-State Machines [F23]

a finite-state machine with 720 states, one input symbol, and a simple transition function:

Q = {(h, m) | 0≤ h≤ 11 and 0≤ m≤ 59}
Σ= {tick}

δ((h, m), tick) =

(h, m+ 1) if m< 59

(h+ 1,0) if h< 11 and m= 59

(0, 0) if h= 11 and m= 59

This clock doesn’t quite match our abstraction, because there’s no “start” state or “accepting”
states, unless perhaps you consider the “accepting” state to be the time when your train arrives.

Three finite-state machines.

Amore playful example of a finite-state machine is the Rubik’s cube, a well-knownmechanical
puzzle invented independently by Ernő Rubik in Hungary and Terutoshi Ishigi in Japan in the mid-
1970s. This puzzle has precisely 519,024,039,293,878,272,000 distinct configurations. In the unique
solved configuration, each of the six faces of the cube shows exactly one color. We can change the
configuration of the cube by rotating one of the six faces of the cube by 90 degrees, either clockwise
or counterclockwise. The cube has six faces (front, back, left, right, up, and down), so there are
exactly twelve possible turns, typically represented by the symbols F,B,L,R,U,D,F′,B′,L′,R′,U′,D′,
where the letter indicates which face to turn, unadorned letters indicate clockwise rotations,
and primed letters indicate counterclockwise rotations. Thus, we can represent a Rubik’s cube
as a finite-state machine with 519,024,039,293,878,272,000 states and an input alphabet with 12
symbols; or equivalently, as a directed graph with 519,024,039,293,878,272,000 vertices, each with
12 outgoing edges. In practice, the number of states is far too large for us to actually draw the
machine or explicitly specify its transition function; nevertheless, the number of states is still
finite. If we let the start state s and the sole accepting state be the solved state, then the language
of this finite state machine is the set of all move sequences that leave the cube unchanged.

3.5 A Brute-Force Design Example

As usual in algorithm design, there is no purely mechanical recipe—no automatic method—no
algorithm—for building DFAs in general. Here I’ll describe one systematic approach that works
reasonably well, although it tends to produce DFAs with many more states than necessary.

8

https://commons.wikimedia.org/wiki/File:BahnhofsuhrZuerich_P1050253.jpg
https://commons.wikimedia.org/wiki/File:Curta_-_National_Museum_of_Computing.jpg
https://commons.wikimedia.org/wiki/File:Rubik%27s_cube.svg

Models of Computation Lecture 3: Finite-State Machines [F23]

DFAs are Algorithms

The basic approach is to try to construct an algorithm that looks like MultipleOf5: A simple
for-loop through the symbols, using a constant number of variables, where each variable (except
the loop index) has only a constant number of possible values. Here, “constant” means an actual
number that is not a function of the input size n. You should be able to compute the number of
possible values for each variable at compile time.

For example, the following algorithm determines whether a given string in Σ= {0,1} contains
the substring 11.

Contains11(w[1 .. n]):
found← False
for i← 1 to n

if i = 1
last2← w[1]

else
last2← w[i − 1] ·w[i]

if last2= 11
found← True

return found

Aside from the loop index, this algorithm has exactly two variables.

• A boolean flag found indicating whether we have seen the substring 11. This variable has
exactly two possible values: True and False.

• A string last2 containing the last (up to) three symbols we have read so far. This variable
has exactly 7 possible values: ϵ, 0, 1, 00, 01, 10, and 11.

Thus, altogether, the algorithm can be in at most 2× 7= 14 possible states, one for each possible
pair (found, last2). Thus, we can encode the behavior of Contains11 as a DFA with fourteen
states, where the start state is (False,ϵ) and the accepting states are all seven states of the form
(True,∗). The transition function is described in the following table (split into two parts to save
space):

q δ[q,0] δ[q,1]

(False,ϵ) (False,0) (False,1)
(False,0) (False,00) (False,01)
(False,1) (False,10) (True,11)

(False,00) (False,00) (False,01)
(False,01) (False,10) (True,11)
(False,10) (False,00) (False,01)
(False,11) (False,10) (True,11)

q δ[q,0] δ[q,1]

(True,ϵ) (True,0) (True,1)
(True,0) (True,00) (True,01)
(True,1) (True,10) (True,11)

(True,00) (True,00) (True,01)
(True,01) (True,10) (True,11)
(True,10) (True,00) (True,01)
(True,11) (True,10) (True,11)

For example, given the input string 1001011100, this DFA performs the following sequence of

9

Models of Computation Lecture 3: Finite-State Machines [F23]

transitions and then accepts.

(False,ϵ)
1
−→ (False,1)

0
−→ (False,10)

0
−→ (False,00)

1
−→

(False,01)
0
−→ (False,10)

1
−→ (False,01)

1
−→

(True,11)
1
−→ (True,11)

0
−→ (True,10)

0
−→ (True,00)

. . . but Algorithms can be Wasteful

You can probably guess that the brute-force DFA we just constructed has considerably more states
than necessary, especially after seeing its transition graph:

0 110

F,ε Τ,ε

F,0

F,1

Τ,0

Τ,1

F,00

F,10

F,01

F,11

Τ,00

Τ,10

Τ,01

Τ,11

1

1

1

1

1 1

0

1

10
0

0

1

0

1

0

0

0

1

0

0

0

01

Our brute-force DFA for strings containing the substring 11

For example, the state (False,11) has no incoming transitions, so we can just delete it. (This
state would indicate that we’ve never read 11, but the last two symbols we read were 11, which is
impossible!) More significantly, we don’t need actually to remember both of the last two symbols,
but only the penultimate symbol, because the last symbol is the one we’re currently reading. This
observation allows us to reduce the number of states from fourteen to only six.

1

1

1

0

1

01

0

0

1

0 0

Τ,0

F,ε Τ,ε

F,0

F,1 Τ,1

A less brute-force DFA for strings containing the substring 11

But even this DFA has more states than necessary. Once the flag part of the state is set to
True, we know the machine will eventually accept, so we might as well merge all the accepting
states together. More subtly, because both transitions out of (False,0) and (False,ϵ) lead to the
same states, we can merge those two states together as well. After all these optimizations, we
obtain the following DFA with just three states:

• The start state, which indicates that the machine has not read the substring 11 and did not
just read the symbol 1.

10

Models of Computation Lecture 3: Finite-State Machines [F23]

• An intermediate state, which indicates that the machine has not read the substring 11 but
just read the symbol 1.

• A unique accept state, which indicates that the machine has read the substring 11.

This is the smallest possible DFA for this language.

1
1

0

0,10

A minimal DFA for superstrings of 11

While it is important not to use an excessive number of states when we design DFAs—too
many states makes a DFA hard to understand—there is really no point in trying to reduce DFAs
by hand to the absolute minimum number of states. Clarity is much more important than brevity
(especially in this class), and DFAs with too few states can also be hard to understand. At the end
of this note, I’ll describe an efficient algorithm that automatically transforms any given DFA into
an equivalent DFA with the fewest possible states.

3.6 Combining DFAs: The Product Construction

Now suppose we want to accept all strings that contain both 00 and 11 as substrings, in either
order. Intuitively, we’d like to run two DFAs in parallel—the DFA M00 to detect superstrings of 00
and a similar DFA M11 obtained from M00 by swapping 0↔ 1 everywhere—and then accept the
input string if and only if both of these DFAs accept.

In fact, we can encode precisely this “parallel computation” into a single DFA using the
following product construction first proposed by Edward Moore in 1956:

• The states of the new DFA are all ordered pairs (p, q), where p is a state in M00 and q is a
state in M11.

• The start state of the new DFA is the pair (s, s′), where s is the start state of M00 and s′ is
the start state of M11.

• The new DFA includes the transition (p, q)
a
−→ (p′, q′) if and only if M00 contains the

transition p
a
−→ p′ and M11 contains the transition q

a
−→ q′.

• Finally, (p, q) is an accepting state of the new DFA if and only if p is an accepting state in
M00 and q is an accepting state in M11.

The resulting nine-state DFA is shown on the next page, with the two factor DFAs M00 and
M11 shown in gray for reference. (The state (a, a) can be removed, because it has no incoming
transition, but let’s not worry about that now.)

More generally, let M1 = (Σ,Q1,δ1, s1, A1) be an arbitrary DFA that accepts some language L1,
and let M2 = (Σ,Q2,δ2, s2, A2) be an arbitrary DFA that accepts some language L2 (over the
same alphabet Σ). We can construct a third DFA M = (Σ,Q,δ, s, A) that accepts the intersection

11

Models of Computation Lecture 3: Finite-State Machines [F23]

a

s

b

as b

s,s s,a s,b

a,s a,a a,b

b,s b,a b,b0,1

0,1

0,1

0

0

1

1

1 10

0

0

1

0 0 0

000

1 1

1 1 1

1
0
1

Building a DFA for the language of strings containing both 00 and 11.

language L1 ∩ L2 as follows.

Q :=Q1 ×Q2 =
�

(p, q)
�

� p ∈Q1 and q ∈Q2

	

δ((p, q), a) :=
�

δ1(p, a), δ2(q, a)
�

s := (s1, s2)

A := A1 × A2 =
�

(p, q)
�

� p ∈ A1 and q ∈ A2

	

To convince ourselves that this product construction is actually correct, let’s consider the
extended transition function δ∗ : (Q×Q′) × Σ∗ → (Q ×Q′), which acts on strings instead of
individual symbols. Recall that this function is defined recursively as follows:

δ∗
�

(p, q), w
�

:=

(

(p, q) if w= ϵ,

δ∗
�

δ((p, q), a), x
�

if w= ax .

This function behaves exactly as we should expect:

Lemma 3.3. δ∗((p, q), w) =
�

δ∗1(p, w), δ∗2(q, w)
�

for any string w.

Proof: Let w be an arbitrary string. Assume δ∗((p, q), x) =
�

δ∗1(p, x), δ∗2(q, x)
�

for every string x
that is shorter than w. As usual, there are two cases to consider.

• First suppose w= ϵ:

δ∗
�

(p, q),ϵ
�

= (p, q) by the definition of δ∗

=
�

δ∗1(p,ϵ), q
�

by the definition of δ∗1
=
�

δ∗1(p, e), δ∗2(q,ϵ)
�

by the definition of δ∗2

12

Models of Computation Lecture 3: Finite-State Machines [F23]

• Now suppose w= ax for some symbol a and some string x:

δ∗
�

(p, q), ax
�

= δ∗
�

δ((p, q), a), x
�

by the definition of δ∗

= δ∗
�

(δ1(p, a), δ2(q, a)), x
�

by the definition of δ

=
�

δ∗1((δ1(p, a), x), δ∗2(δ2(q, a), x)
�

by the induction hypothesis

=
�

δ∗1(p, ax), δ∗2(q, ax)
�

by the definitions of δ∗1 and δ∗2.

In both cases, we conclude that δ∗((p, q), w) =
�

δ∗1(p, w), δ∗2(q, w)
�

. □

An immediate consequence of this lemma is that for every string w, we have δ∗(s, w) ∈ A if
and only if both δ∗1(s1, w) ∈ A1 and δ∗2(s2, w) ∈ A2. In other words, M accepts w if and only if
both M1 accepts w and M2 accept w, as required.

As usual, this construction technique does not necessarily yield minimal DFAs. For example,
in our first example of a product DFA, illustrated above, the central state (a, a) cannot be reached
by any other state and is therefore redundant. Whatever.

Similar product constructions can be used to build DFAs that accept any other boolean
combination of languages; in fact, the only part of the construction that changes is the choice of
accepting states. For example:

• To accept the union L1 ∪ L2, define A=
�

(p, q)
�

� p ∈ A1 or q ∈ A2

	

.

• To accept the difference L1 \ L2, define A=
�

(p, q)
�

� p ∈ A1 but q ̸∈ A2

	

.

• To accept the symmetric difference L1 ⊕ L2, define A=
�

(p, q)
�

� p ∈ A1 xor q ∈ A2

	

.

Examples of these constructions are shown on the next page.
Moreover, by cascading this product construction, we can construct DFAs that accept arbitrary

boolean combinations of arbitrary finite collections of regular languages.

s,s s,a s,b

a,s a,a a,b

b,s b,a b,b
0,10

1

0 0 0

000

1 1

1 1 1

1
0

1

s,s s,a s,b

a,s a,a a,b

b,s b,a b,b
0,10

1

0 0 0

000

1 1

1 1 1

1
0

1

s,s s,a s,b

a,s a,a a,b

b,s b,a b,b
0,10

1

0 0 0

000

1 1

1 1 1

1
0

1

(a) (b) (c)

DFAs for (a) strings that contain 00 or 11, (b) strings that contain either 00 or 11 but not both, and (c) strings that contain 11 if
they contain 00. These DFAs are identical except for their choices of accepting states.

3.7 Automatic Languages and Closure Properties

The language of a finite state machine M , denoted L(M), is the set of all strings in Σ∗ that M
accepts. More formally, if M = (Σ,Q,δ, s, A), then

L(M) :=
�

w ∈ Σ∗
�

� δ∗(s, w) ∈ A
	

.

13

Models of Computation Lecture 3: Finite-State Machines [F23]

We call a language automatic if it is the language of some finite state machine. Our product
construction examples let us prove that the set of automatic languages is closed under simple
boolean operations.

Theorem 3.4. Let L and L′ be arbitrary automatic languages over an arbitrary alphabet Σ.
• L = Σ∗ \ L is automatic.
• L ∪ L′ is automatic.
• L ∩ L′ is automatic.
• L \ L′ is automatic.
• L ⊕ L′ is automatic.

Eager students may have noticed that a Google search for the phrase “automatic language”
turns up no results that are relevant for this class, except perhaps this lecture note. That’s
because “automatic” is just a synonym for “regular”! This equivalence was first observed by
Stephen Kleene (the inventor of regular expressions) in 1956.

Theorem 3.5 (Kleene). For any regular expression R, there is a DFA M such that L(R) = L(M).
For any DFA M , there is a regular expression R such that L(M) = L(R).

Unfortunately, we don’t yet have all the tools we need to prove Kleene’s theorem; we’ll
return to the proof in the next lecture note, after we have introduced nondeterministic finite-state
machines. The proof is actually constructive—there are explicit algorithms that transform
arbitrary DFAs into equivalent regular expressions and vice versa.3

This equivalence between regular and automatic languages implies that the set of regular
languages is also closed under simple boolean operations. The union of two regular languages
is regular by definition, but it’s much less obvious that every boolean combination of regular
languages can also be described by regular expressions.

Corollary 3.6. Let L and L′ be arbitrary regular languages over an arbitrary alphabet Σ.
• L = Σ∗ \ L is regular.
• L ∩ L′ is regular.
• L \ L′ is regular.
• L ⊕ L′ is regular.

Conversely, because concatenations and Kleene closures of regular languages are regular by
definition, we can immediately conclude that concatenations and Kleene closures of automatic
languages are automatic.

Corollary 3.7. Let L and L′ be arbitrary automatic languages.
• L • L′ is automatic.
• L∗ is automatic.

These results give us several options to prove that a given languages is regular or automatic.
We can either (1) build a regular expression that describes the language, (2) build a DFA that
accepts the language, or (3) build the language from simpler pieces from other regular/automatic
languages. (Later we’ll see a fourth option, and possibly even a fifth.)

3These conversion algorithms run in exponential time in the worst case, but that’s unavoidable. There are regular
languages whose smallest accepting DFA is exponentially larger than their smallest regular expression, and there are
regular languages whose smallest regular expression is exponentially larger than their smallest accepting DFA.

14

Models of Computation Lecture 3: Finite-State Machines [F23]

3.8 Proving a Language is Not Regular

But now suppose we’re faced with a language L where none of these techniques seem to work.
How would we prove L is not regular? By Theorem 3.5, it suffices to prove that there is no
finite-state automaton that accepts L. Equivalently, we need to prove that any automaton that
accepts L requires infinitely many states. That may sound tricky, what with the “infinitely many”,
but there’s actually a fairly simple technique to prove exactly that.

Distinguishing Suffixes

Perhaps the single most important feature of DFAs is that they have no memory other than the
current state. Once a DFA enters a particular state, all future transitions depend only on that
state and future input symbols; past input symbols are simply forgotten.

For example, consider our very first DFA, which accepts the binary representations of integers
divisible by 5.

0

1 1

1

1

0

0

0

0

1

1

0

2

3

4

DFA accepting binary multiples of 5.

The strings 0010 and 11011 both lead this DFA to state 2, although they follow different
transitions to get there. Thus, for any string z, the strings 0010z and 11011z also lead to the
same state in this DFA. In particular, 0010z leads to the accepting state if and only if 11011z leads
to the accepting state. It follows that 0010z is divisible by 5 if and only if 11011z is divisible by 5.

More generally, any DFA M = (Σ,Q, s, A,δ) defines an equivalence relation over Σ∗, where
two strings x and y are equivalent if and only if they lead to the same state, or more formally, if
δ∗(s, x) = δ∗(s, y). If x and y are equivalent strings, then for any string z, the strings xz and
yz are also equivalent. In particular, M accepts xz if and only if M accepts yz. Thus, if L is
the language accepted by M , then xz ∈ L if and only if yz ∈ L. In short, if the machine can’t
distinguish between x and y, then the language can’t distinguish between xz and yz for any
suffix z.

Now let’s turn the previous argument on its head. Let L be an arbitrary language, and let x
and y be arbitrary strings. A distinguishing suffix for x and y (with respect to L) is a third
string z such that exactly one of the strings xz and yz is in L. If x and y have a distinguishing
suffix z, then in any DFA that accepts L, the strings xz and yz must lead to different states, and
therefore the strings x and y must lead to different states!

For example, let L5 denote the the set of all strings over {0,1} that represent multiples of 5 in
binary. Then the strings x = 01 and y = 0011 are distinguished by the suffix z = 01:

xz = 01 • 01= 0101 ∈ L5 (because 01012 = 5)
yz = 0011 • 01= 001101 ̸∈ L5 (because 0011012 = 13)

15

Models of Computation Lecture 3: Finite-State Machines [F23]

It follows that in every DFA that accepts L5, the strings 01 and 0011 lead to different states.
Moreover, since neither 01 nor 0011 belong to L5, every DFA that accepts L5 must have at least
two non-accepting states, and therefore at least three states overall.

Fooling Sets

A fooling set for a language L is a set F of strings such that every pair of strings in F has a
distinguishing suffix. For example, F = {0,1,10,11,100} is a fooling set for the language L5 of
binary multiples of 5, because each pair of strings in F has a distinguishing suffix:

• 0 distinguishes 0 and 1, because 00 ∈ L5 but 10 /∈ L5;

• 0 distinguishes 0 and 10;

• 0 distinguishes 0 and 11;

• 0 distinguishes 0 and 100;

• 1 distinguishes 1 and 10;

• 01 distinguishes 1 and 11;

• 01 distinguishes 1 and 100;

• 1 distinguishes 10 and 11;

• 1 distinguishes 10 and 100;

• 11 distinguishes 11 and 100.

So in for every DFA M that accepts L5, each pair of these five strings leads to two different
states. In other words, each string leads M to a different state. It follows that every DFA that
accepts the language L5 has at least five states. And hey, look, we already have a DFA for L5 with
five states, so that’s the best we can do!

More generally, for every language L, and for every fooling set F for L, every DFA that accepts L
must have at least |F | states.

Theorem 3.8. Let L be an arbitrary language, let M be an arbitrary DFA that accepts L, and
let F be an arbitrary fooling set for L. The number of states in M is greater than or equal to the
number of strings in F .

This theorem has a very important consequence: Suppose we can find an infinite fooling
set for some language L. Then every DFA that accepts L must have an infinite number of states.
But there’s no such thing as a finite-state machine with an infinite number of states! So it’s
impossible for any DFA to accept L. In other words, L is not regular.

If L has an infinite fooling set, then L is not regular.

Finding an infinite fooling set is arguably both the simplest and most powerful method for proving
that a language is non-regular.

16

Models of Computation Lecture 3: Finite-State Machines [F23]

Examples

Here are a few canonical examples of the fooling-set technique in action. I will write out the first
proof in more explicit detail. I strongly recommend following the line-by-line format of the first
two proofs in your homeworks and exams.

Lemma 3.9. The language L = {0n1n | n≥ 0} is not regular.

Proof: Consider the infinite set F = {0n | n≥ 0}, or more simply F = 0∗.
Let x and y be arbitrary distinct strings in F .
The definition of F implies x = 0i and y = 0 j for some integers i ̸= j.
Let z be the string 1i .
Then xz = 0i1i ∈ L.
But yz = 0 j1i ̸∈ L, because i ̸= j.
So z is a distinguishing suffix for x and y .
Because x and y are arbitrary strings in F , every pair of strings in F has a distinguishing suffix.
In other words, F is a fooling set for L.
In fact, F is an infinite fooling set for L.
We conclude that L cannot be regular. □

Lemma 3.10. The language L = {wwR | w ∈ Σ∗} of even-length palindromes is not regular.

Proof: Let F denote the infinite set 0∗1.
Let x and y be arbitrary distinct strings in F .
We must have x = 0i1 and y = 0 j1 for some integers i ̸= j.
Let z = 10i .
Then xz = 0i110i ∈ L.
But yz = 0i110 j ̸∈ L, because i ̸= j.
We conclude that F is a fooling set for L.
Because F is infinite, L cannot be regular. □

Lemma 3.11. The language L = {02n
| n≥ 0} is not regular.

Proof (F = L): Let x and y be arbitrary distinct strings in L. Then we must have x = 02i

and y = 02 j
for some integers i ̸= j. The suffix z = 02i

distinguishes x and y, because
xz = 02i+2i

= 02i+1
∈ L, but yz = 02i+2 j

̸∈ L. We conclude that L itself is a fooling set for L.
Because L is infinite, L cannot be regular. □

Proof (F = 0∗): Let x and y be arbitrary distinct strings in 0∗. Then we must have x = 0i and
y = 0 j for some integers i ̸= j. Without loss of generality, assume i < j; otherwise swap the
variable. Let k be any positive integer such that 2k > j. Consider the suffix z = 02k−i. We have
xz = 0i+(2k−i) = 02k

∈ L, but yz = 0 j+(2k−i) = 02k−i+ j ̸∈ L, because

2k < 2k − i + j < 2k + j < 2k + 2k = 2k+1.

Thus, z is a distinguishing suffix for x and y . We conclude that 0∗ is a fooling set for L. Because
L is infinite, L cannot be regular. □

17

Models of Computation Lecture 3: Finite-State Machines [F23]

Proof (F = 0∗ again): Let x and y be arbitrary distinct strings in 0∗. Then we must have x = 0i

and y = 0 j for some integers i ̸= j; without loss of generality, assume i < j. Let k be any positive
integer such that 2k−1 > j. Consider the suffix z = 02k− j. We have xz = 0i+(2k− j) = 02k− j+i ̸∈ L,
because

2k−1 < 2k − 2k−1 + i < 2k − j + i < 2k.

On the other hand, yz = 0 j+(2k− j) = 02k
∈ L. Thus, z is a distinguishing suffix for x and y. We

conclude that 0∗ is a fooling set for L. Because L is infinite, L cannot be regular. □

The previous examples show the flexibility of this proof technique; a single non-regular
language can have many different infinite fooling sets,⁴ and each pair of strings in any fooling
set can have many different distinguishing suffixes. Fortunately, we only have to find one infinite
set F and one distinguishing suffix for each pair of strings in F .

Lemma 3.12. The language L = {0p | p is prime} is not regular.

Proof (F = 0∗): Again, we use 0∗ as our fooling set, but but the actual argument is somewhat
more complicated than in our earlier examples.

Let x and y be arbitrary distinct strings in 0∗. Then we must have x = 0i and y = 0 j for
some integers i ̸= j; without loss of generality, assume that i < j. Let p be any prime number
larger than i. Because p+ 0(j − i) is prime and p+ p(j − i)> p is not, there must be a positive
integer k ≤ p such that p+ (k− 1)(j − i) is prime but p+ k(j − i) is not. Then I claim that the
suffix z = 0p+(k−1) j−ki distinguishes x and y:

xz = 0i 0p+(k−1) j−ki = 0p+(k−1)(j−i) ∈ L because p+ (k− 1)(j − i) is prime;

yz = 0 j 0p+(k−1) j−ki = 0p+k(j−i) ̸∈ L because p+ k(j − i) is not prime.

(Because i < j and i < p, the suffix 0p+(k−1) j−ki = 0(p−i)+(k−1)(j−i) has positive length and
therefore actually exists!) We conclude that 0∗ is indeed a fooling set for L, which implies that L
is not regular. □

Proof (F = L): Let x and y be arbitrary distinct strings in L. Then we must have x = 0p and
y = 0q for some primes p ̸= q; without loss of generality, assume p < q.

Now consider strings of the form 0p+k(q−p). Because p+0(q− p) is prime and p+ p(q− p)> p
is not prime, there must be a non-negative integer k < p such that p + k(p − q) is prime but
p+ (k+ 1)(p− q) is not prime. I claim that the suffix z = 0k(q−p) distinguishes x and y:

xz = 0p 0k(q−p) = 0p+k(p−q) ∈ L because p+ k(p− q) is prime;

yz = 0q 0k(q−p) = 0p+(k+1)(q−p) ̸∈ L because p+ (k+ 1)(p− q) is not prime.

We conclude that L is a fooling set for itself!! Because L is infinite, L cannot be regular! □

⁴At some level, this observation is trivial. If F is an infinite fooling set for L, then every infinite subset of F is also
an infinite fooling set for L!

18

Models of Computation Lecture 3: Finite-State Machines [F23]

Choosing the Fooling Set

Obviously the most difficult part of this technique is coming up with an appropriate fooling set.
There is no general algorithm for deriving a fooling set, but there are a few useful rules of thumb.

To find a good fooling set for a language L, I recommend that you try writing an algorithm
to recognize strings in L, as described at the start of this note, where the only variable that
can take on an unbounded number of values is the loop index i. If you succeed, the language
is regular. But if you fail, it’s probably because there are counters or string variables in your
algorithm that you can’t get rid of. One of those unavoidable counters is the basis for your
fooling set.

For example, any algorithm that recognizes the language {0n1n2n | n≥ 0} “obviously” has to
count the 0s in the input string.⁵ Because the 0s come first in the string, this intuition suggests
using the language F = {0n | n≥ 0} as our fooling set, and matching strings of the form 1n2n as
distinguishing suffixes.

Similarly, any algorithm that recognizes palindromes “obviously” has to remember the first
half of the input string to compare against the second half. So we can use strings of the form 0n1

as out fooling set, and matching strings of the form 0n as our distinguishing suffixes. (We need
that final 1 to mark the middle of the palindrome.)

As a general rule, your infinite fooling set should model a single integer counter. That is,
your fooling set should contain exactly one string for each non-negative integer n. So any of the
following might be good fooling sets:

• 0∗ = {0n | n≥ 0}— For each integer n, the fooling set contains the string of n 0s.

• 0∗1= {0n1 | n≥ 0}— Intuitively the 1 at the end is a barrier between strings in the fooling
set and their distinguishing suffixes.

• {042n | n ≥ 0} — The fooling set should contain one string for each integer n, but not
necessarily one string of each integer length.

• (01)∗ = {(01)n | n≥ 0}— Sometimes the counter needs to count larger patterns.

• {02n
| n≥ 0}— An infinite fooling set not have to be a regular language!

• {0n1n | n≥ 0}— An infinite fooling set not have to be a regular language! Remember that
this is a very different language from 0∗1∗!

• {0n10n1 | n ≥ 0}— Again, the 1s are providing a barrier between strings in F and their
distinguishing suffixes.

Single-counter fooling sets let us follow a standard simple boilerplate:

⁵This is a rare example of an “obvious” fact that is actually true. On the other hand, we can avoid counting 1s and
2s by decrementing two copies of the 0 counter.

19

Models of Computation Lecture 3: Finite-State Machines [F23]

Proof: For each non-negative integer n, let wn denote the string
Let F denote the infinite set {wn | n≥ 0}.

For all non-negative integers i < j, let zi j denote the string
Let i and j be arbitrary non-negative integers such that i < j.

Then wizi j ∈ L because

But w jzi j ̸∈ L because
So zi j is a distinguishing suffix for wi and w j .
We conclude that every pair of strings in F has a distinguishing suffix.
In other words, F is a fooling set for L.
Because F is infinite, L cannot be regular. □

For example, suppose L = {0n1n | n≥ 0}.

Proof: For each non-negative integer n, let wn denote the string 0n

Let F denote the infinite set {wn | n≥ 0}.

For all non-negative integers i < j, let zi j denote the string 1i

Let i and j be arbitrary non-negative integers such that i < j.

Then wizi j ∈ L because wizi j = 0i1i

But w jzi j ̸∈ L because w jzi j = 0 j1i but i ̸= j

So zi j is a distinguishing suffix for wi and w j .
We conclude that every pair of strings in F has a distinguishing suffix.
In other words, F is a fooling set for L.
Because F is infinite, L cannot be regular. □

For most languages L—in particular, almost all languages that students are asked to prove
non-regular on homeworks or exams—it is possible to use either a simple regular language like
0∗ or 10∗1 or (01)∗ (with exactly one Kleene star and no +) or the language L itself(!) as an
infinite fooling set for L.

Regular languages like 0∗1∗ with multiple Kleene stars are not good fooling sets. Remember
that 0∗1∗ = {0m1n | m, n≥ 0}; the number of 0s and the number of 1s are independent counters.

The most important point to remember is that you choose the fooling set F , and you can use
that fooling set to effectively impose additional structure on the language L. For example, to
prove that the language L = {w ∈ (0+ 1)∗ | #(0, w) = (1, w)} is not regular, we can use strings
of the form 0n as our fooling set and matching strings of the form 1n as distinguishing suffixes,
exactly as we did for {0n1n | n≥ 0}. Our goal is to find an infinite set of equivalence classes of
strings, not to find every equivalence class of strings.⁶

Finally, every non-regular language has infinitely many infinite fooling sets, but some of these
are easier to prove correct than others. The simple language 0∗ is a fooling set surprisingly often
in principle, but in practice, finding distinguishing suffixes for any two strings 0i and 0 j can be
more difficult than finding distinguishing suffixes for a different fooling set with more structure.

⁶This fooling set proof is implicitly considering the simpler language L ∩ 0∗1∗ = {0n1n | n≥ 0}. If L were regular,
then L ∩ 0∗1∗ would also be regular, because regular languages are closed under intersection.

20

Models of Computation Lecture 3: Finite-State Machines [F23]

3.9 The Myhill-Nerode Theorem⋆

The fooling set technique implies a necessary condition for a language to be accepted by a
DFA—the language must have no infinite fooling sets. In fact, this condition is also sufficient.
The following powerful theorem was first proved by Anil Nerode in 1958, strengthening a 1957
result of John Myhill.⁷ We write x ≡L y if xz ∈ L ⇐⇒ yz ∈ L for all strings z.

The Myhill-Nerode Theorem. For any language L, the following are equal:
(a) the minimum number of states in a DFA that accepts L,
(b) the maximum size of a fooling set for L, and
(c) the number of equivalence classes of ≡L .
In particular, L is accepted by a DFA if and only if every fooling set for L is finite.

Proof: Let L be an arbitrary language.
We have already proved that the size of any fooling set for L is at most the number of states

in any DFA that accepts L, so (a)≥(b). It also follows directly from the definitions that F ⊆ Σ∗ is
a fooling set for L if and only if F contains at most one string in each equivalence class of ≡L;
thus, (b)=(c). We complete the proof by showing that (a)≤(c).

We have already proved that if ≡L has an infinite number of equivalence classes, there is no
DFA that accepts L, so assume that the number of equivalence classes is finite. For any string w,
let [w] denote its equivalence class. We define a DFA M≡ = (Σ,Q, s, A,δ) as follows:

Q :=
�

[w]
�

� w ∈ Σ∗
	

s := [ϵ]

A :=
�

[w]
�

� w ∈ L
	

δ([w], a) := [w • a]

We claim that this DFA accepts the language L; this claim completes the proof of the theorem.
But before we can prove anything about this DFA, we first need to verify that it is actually

well-defined. Let x and y be two strings such that [x] = [y]. By definition of L-equivalence,
for any string z, we have xz ∈ L if and only if yz ∈ L. It immediately follows that for any
symbol a ∈ Σ and any string z′, we have xaz′ ∈ L if and only if yaz′ ∈ L. Thus, by definition of
L-equivalence, we have [xa] = [ya] for every symbol a ∈ Σ. We conclude that the function δ is
indeed well-defined.

An easy inductive proof implies that δ∗([ϵ], x) = [x] for every string x . Thus, M accepts
string x if and only if [x] = [w] for some string w ∈ L. But if [x] = [w], then by definition
(setting z = ϵ), we have x ∈ L if and only if w ∈ L. So M accepts x if and only if x ∈ L. In other
words, M accepts L, as claimed, so the proof is complete. □

3.10 Minimal Automata⋆

Given a DFA M = (Σ,Q, s, A,δ), suppose we want to find another DFA M ′ = (Σ,Q′, s′, A′,δ′) with
the fewest possible states that accepts the same language. In this final section, we describe

⁷Myhill considered the finer equivalence relation x ∼L y, meaning wxz ∈ L if and only if wyz ∈ L for all strings
w and z, and proved that L is regular if and only if ∼L defines a finite number of equivalence classes. Like most
of Myhill’s early automata research, this result appears in an unpublished Air Force technical report. The modern
Myhill-Nerode theorem appears (in an even more general form) as a minor lemma in Nerode’s 1958 paper, which (not
surprisingly) does not cite Myhill.

21

Models of Computation Lecture 3: Finite-State Machines [F23]

an efficient algorithm to minimize DFAs, first described (in slightly different form) by Edward
Moore in 1956. We analyze the running time of Moore’s in terms of two parameters: n= |Q| and
σ = |Σ|.

In the preprocessing phase, we find and remove any states that cannot be reached from the
start state s; this filtering can be performed in O(nσ) time using any graph traversal algorithm.
So from now on we assume that all states are reachable from s.

Now we recursively define two states p and q in the remaining DFA to be distingushable,
written p ̸∼ q , if at least one of the following conditions holds:

• p ∈ A and q ̸∈ A,

• p ̸∈ A and q ∈ A, or

• δ(p, a) ̸∼ δ(q, a) for some a ∈ Σ.

Equivalently, p ̸∼ q if and only if there is a string z such that exactly one of the states δ∗(p, z)
and δ∗(q, z) is accepting. (Sound familiar?) Intuitively, the main algorithm assumes that all
states are equivalent until proven otherwise, and then repeatedly looks for state pairs that can be
proved distinguishable.

The main algorithm maintains a two-dimensional table, indexed by the states, where
Dist[p, q] = True indicates that we have proved states p and q are distinguishable. Initially, for all
states p and q, we set Dist[p, q]← True if p ∈ A and q ̸∈ A or vice versa, and Dist[p, q] = False
otherwise. Then we repeatedly consider each pair of states and each symbol to find more
distinguishable pairs, until we make a complete pass through the table without modifying it. The
table-filling algorithm can be summarized as follows:

MinDFATable(Σ,Q, s, A,δ):
for all p ∈Q

for all q ∈Q
if (p ∈ A and q ̸∈ A) or (p ̸∈ A and q ∈ A)

Dist[p, q]← True
else

Dist[p, q]← False
notdone← True
while notdone

notdone← False
for all p ∈Q

for all q ∈Q
if Dist[p, q] = False
for all a ∈ Σ

if Dist[δ(p, a),δ(q, a)]
Dist[p, q]← True
notdone← True

return Dist

The algorithm must eventually halt, because there are only a finite number of entries in the
table that can be marked. In fact, the main loop is guaranteed to terminate after at most n
iterations, which implies that the entire algorithm runs in O(σn3) time. Once the table is filled,⁸
any two states p and q such that Dist(p, q) = False are equivalent and can be merged into a
single state. The remaining details of constructing the minimized DFA are straightforward.

22

Models of Computation Lecture 3: Finite-State Machines [F23]

ÆÆÆ Need to prove that the main loop terminates in at most n iterations.

With more care, Moore’s minimization algorithm can be modified to run in O(σn2) time. An
even faster DFA minimization algorithm, due to John Hopcroft, runs in O(σn log n) time.

Example

To get a better idea how this algorithmworks, let’s visualize its execution on our earlier brute-force
DFA for strings containing the substring 11. This DFA has four unreachable states: (False,11),
(True,ϵ), (True,0), and (True,1). We remove these states, and relabel the remaining states for
easier reference. (In an actual implementation, the states would almost certainly be represented
by indices into an array anyway, not by mnemonic labels.)

0 110

1

1

1

1

1

0

01

0

0

0

1

0

0

01

0

1

2

3

5

4 6

8

7

9

Our brute-force DFA for strings containing the substring 11, after removing all four unreachable states

The main algorithm initializes (the bottom half of) a 10×10 table as follows. (In the following
figures, cells marked × have value True and blank cells have value False.)

0 1 2 3 4 5 6 7 8
1
2
3
4
5
6 × × × × × ×
7 × × × × × ×
8 × × × × × ×
9 × × × × × ×

In the first iteration of the main loop, the algorithm discovers several distinguishable pairs
of states. For example, the algorithm sets Dist[0,2] ← True because Dist[δ(0,1),δ(2,1)] =
Dist[2,9] = True. After the iteration ends, the table looks like this:

⁸More experienced readers should be outraged by the mere suggestion that any algorithm merely fills in a table, as
opposed to evaluating a recurrence. This algorithm is no exception. Consider the boolean function Dist(p, q, k), which
equals True if and only if states p and q can be distinguished by some string of length at most k. This function obeys
the following recurrence:

Dist(p, q, k) =

(p ∈ A)⊕ (q ∈ A) if k = 0,

Dist(p, q, k− 1) ∨
∨

a∈Σ
Dist
�

δ(p, a),δ(q, a), k− 1
�

otherwise.

Moore’s “table-filling” algorithm is a space-efficient dynamic programming algorithm to evaluate this recurrence.

23

Models of Computation Lecture 3: Finite-State Machines [F23]

0 1 2 3 4 5 6 7 8
1
2 × ×
3 ×
4 × × ×
5 × ×
6 × × × × × ×
7 × × × × × ×
8 × × × × × ×
9 × × × × × ×

The second iteration of the while loop makes no further changes to the table—We got lucky!—so
the algorithm terminates.

The final table implies that the 10 states of our DFA fall into exactly three equivalence classes:
{0,1, 3,5}, {2,4}, and {6,7, 8,9}. Replacing each equivalence class with a single state gives us
the three-state DFA that we already discovered.

0
1

1

0

1

1

1

1

1

0

01

0

0

0

1

0

0

01

0

0

1

0,1

1

3 4 6

0

1

2

5 8

7

9

Equivalence classes of states in our DFA, and the resulting minimal equivalent DFA.

Exercises

1. For each of the following languages in {0,1}∗, describe a deterministic finite-state machine
that accepts that language. There are infinitely many correct answers for each language.
“Describe” does not necessarily mean “draw”.

(a) Only the string 0110.
(b) Every string except 0110.
(c) Strings that contain the substring 0110.
(d) Strings that do not contain the substring 0110.
⋆(e) Strings that contain an even number of occurrences of the substring 0110. (For

example, this language contains the strings 0110110 and 01011.)
(f) Strings that contain the subsequence 0110.

24

Models of Computation Lecture 3: Finite-State Machines [F23]

(g) Strings that do not contain the subsequence 0110.
⋆(h) Strings that contain an even number of occurrences of the subsequence 0110.

(i) Strings that contain an even number of 1s and an odd number of 0s.

(j) Every string that represents a number divisible by 7 in binary.

(k) Every string whose reversal represents a number divisible by 7 in binary.

(l) Strings in which the substrings 01 and 10 appear the same number of times.

(m) Strings such that in every prefix, the number of 0s and the number of 1s differ by at
most 1.

(n) Strings such that in every prefix, the number of 0s and the number of 1s differ by at
most 4.

(o) Strings that end with 010 = 0000000000.

(p) All strings in which the number of 0s is even if and only if the number of 1s is not
divisible by 3.

(q) All strings that are both the binary representation of an integer divisible by 3 and the
ternary (base-3) representation of an integer divisible by 4.

(r) Strings in which the number of 1s is even, the number of 0s is divisible by 3, the
overall length is divisible by 5, the binary value is divisible by 7, the binary value of
the reversal is divisible by 11, and does not contain thirteen 1s in a row. [Hint: This
is more tedious than difficult.]

⋆(s) Strings w such that
�|w|

2

�

mod 6= 4.
⋆(t) Strings w such that F#(10,w) mod 10= 4, where #(10, w) denotes the number of times

10 appears as a substring of w, and as usual Fn is the nth Fibonacci number:

Fn =

0 if n= 0

1 if n= 1

Fn−1 + Fn−2 otherwise

Æ(u) Strings w such that F#(1···0,w) mod 10= 4, where #(1 · · ·0, w) denotes the number of
times 10 appears as a subsequence of w, and as usual Fn is the nth Fibonacci number:

Fn =

0 if n= 0

1 if n= 1

Fn−1 + Fn−2 otherwise

2. (a) Let L ⊆ 0∗ be an arbitrary unary language. Prove that L∗ is regular.

(b) Describe a binary language L ⊆ (0+ 1)∗ such that L∗ is not regular.

3. This series of questions asks about strings over the set of pairs of bits, which we will write
vertically. Let Σ2 denote the set of all bit-pairs:

Σ2 =
��

0
0

�

,
�

0
1

�

,
�

1
0

�

,
�

1
1

�	

25

Models of Computation Lecture 3: Finite-State Machines [F23]

We can interpret any string w of bit-pairs as a 2×|w| matrix of bits; each row of this matrix
is the binary representation of some non-negative integer, possibly with leading 0s. Let
hi(w) and lo(w) respectively denote the numerical values of the top and bottom row of this
matrix. For example, hi(ϵ) = lo(ϵ) = 0, and if

w=
�

0
0

��

0
1

��

1
0

��

1
1

�

=
�

0011
0101

�

then hi(w) = 3 and lo(w) = 5.

(a) Describe a DFA that accepts the language L+1 = {w ∈ Σ∗2 | hi(w) = lo(w) + 1}.
For example, w=

�

1
1

��

1
0

��

0
1

��

0
1

�

=
�

1100
1011

�

∈ L+1, because hi(w) = 12 and lo(w) = 11.

(b) Describe a DFA that accepts the language L×2 = {w ∈ Σ∗2 | hi(w) = 2 · lo(w)}.
For example, w=

�

1
1

��

1
0

��

0
1

��

0
1

�

=
�

1100
0110

�

∈ L×2, because hi(w) = 12 and lo(w) = 6.

(c) Describe a DFA that accepts the language L×3 = {w ∈ Σ∗2 | hi(w) = 3 · lo(w)}.
For example, w=

�

1
0

��

0
0

��

0
1

��

1
1

�

=
�

1001
0011

�

∈ L×3, because hi(w) = 9 and lo(w) = 3.
⋆(d) Let k and ℓ be arbitrary integers. Describe a DFA that accepts the language

L×k+ℓ =
�

w ∈ Σ∗2
�

� hi(w) = k · lo(w) + ℓ
	

.

[Hint: First consider the special cases k = 1 and ℓ= 0.]

(e) Describe a DFA that accepts the language L×3/2 = {w ∈ Σ∗2 | 2 · hi(w) = 3 · lo(w)}.
For example, w=

�

1
0

��

0
0

��

0
1

��

1
1

�

=
�

1001
0110

�

∈ L×3/2, because hi(w) = 9 and lo(w) = 6.
⋆(f) For any positive real number α, define the corresponding language

Lα =
�

w ∈ Σ∗2
�

� hi(w) = ⌊α · lo(w)⌋
	

.

Prove that if α is rational, then Lα is automatic.
Æ(g) Prove that if α is not rational, then Lα is not automatic.

4. Prove that none of the following languages is automatic.

(a)
�

0n2 �
� n≥ 0
	

(b)
�

0n3 �
� n≥ 0
	

(c)
�

0 f (n)
�

� n≥ 0
	

, where f (n) is any fixed polynomial in n with degree at least 2.

(d)
�

0n
�

� n is composite
	

(e)
�

0n10n
�

� n≥ 0
	

(f) {0m1n | m ̸= n}

(g) {0m1n | m< 3n}

(h)
�

02n1n
�

� n≥ 0
	

(i) {w ∈ (0+ 1)∗ | #(0, w) = #(1, w)}

(j) {w ∈ (0+ 1)∗ | #(0, w)< #(1, w)}

26

Models of Computation Lecture 3: Finite-State Machines [F23]

(k) {0m1n | m/n is an integer}

(l) {0m1n | m and n are relatively prime}

(m) {0m1n | n−m is a perfect square}

(n) {w#w | w ∈ (0+ 1)∗}

(o) {ww | w ∈ (0+ 1)∗}

(p)
�

w#0|w|
�

� w ∈ (0+ 1)∗
	

(q)
�

w0|w|
�

� w ∈ (0+ 1)∗
	

(r) {x y | x , y ∈ (0+ 1)∗ and |x |= |y| but x ̸= y}

(s)
�

0m1n0m+n
�

� m, n≥ 0
	

(t) {0m1n0mn | m, n≥ 0}

(u) Strings in which the substrings 00 and 11 appear the same number of times.

(v) Strings of the form w1#w2# · · ·#wn for some n ≥ 2, where wi ∈ {0,1}∗ for every
index i, and wi = w j for some indices i ̸= j.

(w) The set of all palindromes in (0+ 1)∗ whose length is divisible by 7.

(x) {w ∈ (0+ 1)∗ | w is the binary representation of a perfect square}
Æ(y) {w ∈ (0+ 1)∗ | w is the binary representation of a prime number}

5. For each of the following languages over the alphabet Σ = {0,1}, either prove that the
language is regular (by constructing an appropriate DFA or regular expression) or prove
that the language is not regular (using fooling sets). Recall that Σ+ denotes the set of all
nonempty strings over Σ. [Hint: Believe it or not, most of these languages are actually
regular.]

(a)
�

0nw1n
�

� w ∈ Σ∗ and n≥ 0
	

(b)
�

0n1nw
�

� w ∈ Σ∗ and n≥ 0
	

(c)
�

w0n1n x
�

� w, x ∈ Σ∗ and n≥ 0
	

(d)
�

0nw1n x
�

� w, x ∈ Σ∗ and n≥ 0
	

(e)
�

0nw1x0n
�

� w, x ∈ Σ∗ and n≥ 0
	

(f)
�

0nw0n
�

� w ∈ Σ+ and n> 0
	

(g)
�

w0nw
�

� w ∈ Σ+ and n> 0
	

(h)
�

wxw
�

� w, x ∈ Σ∗
	

(i)
�

wxw
�

� w, x ∈ Σ+
	

(j)
�

wxwR
�

� w, x ∈ Σ+
	

(k)
�

wwx
�

� w, x ∈ Σ+
	

(l)
�

wwR x
�

� w, x ∈ Σ+
	

(m)
�

wxwy
�

� w, x , y ∈ Σ+
	

(n)
�

wxwR y
�

� w, x , y ∈ Σ+
	

27

Models of Computation Lecture 3: Finite-State Machines [F23]

(o)
�

xwwy
�

� w, x , y ∈ Σ+
	

(p)
�

xwwR y
�

� w, x , y ∈ Σ+
	

(q)
�

wx xw
�

� w, x ∈ Σ+
	

⋆(r)
�

wxwR x
�

� w, x ∈ Σ+
	

(s) All strings w such that no prefix of w is a palindrome.

(t) All strings w such that no prefix of w with length at least 3 is a palindrome.

(u) All strings w such that no substring of w with length at least 3 is a palindrome.

(v) All strings w such that no prefix of w with positive even length is a palindrome.

(w) All strings w such that no substring of w with positive even length is a palindrome.

(x) Strings in which the substrings 00 and 11 appear the same number of times.

(y) Strings in which the substrings 01 and 10 appear the same number of times.

6. Let F and L be arbitrary infinite languages in {0,1}∗.

(a) Suppose for any two distinct strings x , y ∈ F , there is a string w ∈ Σ∗ such that
wx ∈ L and wy ̸∈ L. (We can reasonably call w a distinguishing prefix for x and y .)
Prove that L cannot be regular. [Hint: The reversal of a regular language is regular.]

⋆(b) Suppose for any two distinct strings x , y ∈ F , there are two (possibly equal) strings
w, z ∈ Σ∗ such that wxz ∈ L and wyz ̸∈ L. Prove that L cannot be regular.

28

	Finite-State Machines
	Intuition
	Formal Definitions
	A Simpler Example
	Real-World Examples
	A Brute-Force Design Example
	Combining DFAs: The Product Construction
	Automatic Languages and Closure Properties
	Proving a Language is Not Regular
	The Myhill-Nerode Theorem
	Minimal Automata

