

Vertex Cover Linear Program

Input Graph G = (V, E)Where $V = \{v_1, v_2, ..., v_n\}$ and $E = \{\{v_i, v_i\} \text{ where } v_i, v_i \in V\}$ Output $\mathcal{N} \subset \mathcal{N}$ so that all edges are covered for all zvi, vj 3EE, Vi EV or Vj EV V as small as possible

Linear Program Variables: Xi for each vi Xi=1 ViGV XiE 2013 Xi=0 Vi&V' objective: min $\leq x_i$ for each edge {vi, vj}: Xit×jブー

XEZd

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset. Nars: $\chi_i = \bigcup_{i \in U} i \in V$

				YC=O IT KOY
			min	5 Xi
Verfex	Cover exampl	L		$x_1 + x_2 > 1$
Objective: min	$\sum_{i} x_{i}$			
Subject to: x_i +	$x_j \ge 1$, for each edge $\{v_i, v_j\}$			
$x_i \in$	$\{0,1\}$, for each vertex i			
Example:	Objective: $\min x_1 + x_2 + x_3 + x_4$ Subject to: $x_1 + x_2 \ge 1$		(2)(3)	$U = \{1, 4, 7, 8, 10\}$
	$x_2 + x_3 \ge 1$ $x_2 + x_4 \ge 1$ $x_3 + x_4 \ge 1$	1		$S = \left\{ \begin{array}{c} \{1, 7, 8\}, \{1, 4, 7\}, \\ (7, 9), (4, 9, 10) \end{array} \right\}$
	$x_3 + x_4 \ge 1 x_1, x_2, x_3, x_4 \in \{0, 1\}$		(4)	({/,8}, <u>{4</u> ,8,10}) ^{\$} 3 ^{\$} 4

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

 $\begin{array}{lll} \text{Objective:} & \min \sum_s x_s \\ \text{Subject to:} & \sum_{s: \ u \in s} x_s \geq 1 \text{, for each } u \in U \\ & x_s \in \{0,1\} \text{, for each set } s \end{array}$

$$U = \{1, 4, 7, 8, 10\}$$
$$S = \left\{ \begin{cases} \{1, 7, 8\}, \{1, 4, 7\}, \\ \{7, 8\}, \{4, 8, 10\} \end{cases} \right\}$$

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

We now have a reduction from Vertex Cover to Solving ILP

We now have a reduction from Vertex Cover to Solving ILP

So Solving ILP is NP-hard

$x_1, x_2 \in \mathbb{R}$	
Objective: Subject to:	$\max 5x_{1} + 8x_{2}$ $x_{1} + x_{2} \le 6$ $5x_{1} + 9x_{2} \le 45$ $x_{1}, x_{2} \ge 0$

$$x_1, x_2 \in \mathbb{R}$$

Objective: max $5x_1 + 8x_2$
Subject to: $x_1 + x_2 \leq 6$
 $5x_1 + 9x_2 \leq 45$
 $x_1, x_2 \geq 0$

$x_1, x_2 \in \mathbb{R}$	
Objective: Subject to:	$\max 5x_1 + 8x_2 x_1 + x_2 \le 6 5x_1 + 9x_2 \le 45 x_1, x_2 \ge 0$

$$x_1, x_2 \in \mathbb{N}$$
 $\rightarrow natoral \ddagger$
 $in + \le \Rightarrow 0$ Objective: $max 5x_1 + 8x_2$ Subject to: $x_1 + x_2 \le 6$
 $5x_1 + 9x_2 \le 45$
 $x_1, x_2 \ge 0$

$x_1, x_2 \in \mathbb{N}$	
Objective: Subject to:	$\max 5x_1 + 8x_2 x_1 + x_2 \le 6 5x_1 + 9x_2 \le 45 x_1, x_2 \ge 0$

$x_1, x_2 \in \mathbb{N}$	
Objective: Subject to:	$\max 5x_1 + 8x_2 x_1 + x_2 \le 6 5x_1 + 9x_2 \le 45 x_1, x_2 \ge 0$

- Closest integer solution?
- Closest feasible integer solution?
- Closest feasible integer solution on feasible region boundary?

$x_1, x_2 \in \mathbb{N}$	
Objective: Subject to:	$\max 5x_1 + 8x_2 x_1 + x_2 \le 6 5x_1 + 9x_2 \le 45 x_1, x_2 \ge 0$

- Closest integer solution? Not feasible
- Closest feasible integer solution?
- Closest feasible integer solution on feasible region boundary?

$x_1, x_2 \in \mathbb{N}$	
Objective: Subject to:	$\max 5x_1 + 8x_2$ $x_1 + x_2 \le 6$ $5x_1 + 9x_2 \le 45$ $x_1, x_2 \ge 0$

- Closest integer solution? Not feasible
- Closest feasible integer solution? Obj = 34
- Closest feasible integer solution on feasible region boundary?

$\max 5x_1 + 8x_2$ $x_1 + x_2 \le 6$ $5x_1 + 9x_2 \le 45$

- Closest integer solution? Not feasible
- Closest feasible integer solution? Obj = 34
- Closest feasible integer solution on feasible region boundary? Obj = 39

$x_1, x_2 \in \mathbb{N}$	
Objective:	$\max 5x_1 + 8x_2$
Subject to.	$x_1 + x_2 \le 0$ $5x_1 + 9x_2 \le 45$
	$x_1, x_2 \ge 0$

- Closest integer solution? Not feasible
- Closest feasible integer solution? Obj = 34
- Closest feasible integer solution on feasible region boundary? Obj = 39
- Actual optimal Obj = 40

$$x_1, x_2 \in \mathbb{N}$$

Objective: max $5x_1 + 8x_2$
ubject to: $x_1 + x_2 \leq 6$
 $5x_1 + 9x_2 \leq 45$
 $x_1, x_2 \geq 0$

$$x_1, x_2 \in \mathbb{N}$$

Objective: max $5x_1 + 8x_2$
Subject to: $x_1 + x_2 \leq 6$
 $5x_1 + 9x_2 \leq 45$
 $x_1, x_2 \geq 0$

$$x_1, x_2 \in \mathbb{N}$$

Objective: max $5x_1 + 8x_2$
Subject to: $x_1 + x_2 \leq 6$
 $5x_1 + 9x_2 \leq 45$
 $x_1, x_2 \geq 0$

• Not convex.

$x_1, x_2 \in \mathbb{N}$	
Objective: Subject to:	$\max 5x_1 + 8x_2 x_1 + x_2 \le 6 5x_1 + 9x_2 \le 45 x_1, x_2 \ge 0$

• Not convex.

$x_1, x_2 \in \mathbb{N}$	
Objective: Subject to:	$\max 5x_1 + 8x_2 x_1 + x_2 \le 6 5x_1 + 9x_2 \le 45 x_1, x_2 \ge 0$

- Not convex.
- local optimum ≠ global optimum.

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_i x_i$ Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j) $x_i \in \{0,1\}$, for each vertex i

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_i x_i$ Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j) $x_i \in \{0, 1\}$, for each vertex i

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_i x_i$ $\sum_i x_i \ge 1$, for each edge e = (i, j) $\in \mathbb{NP}$ -HardSubject to: $x_i \in \{0, 1\}$, for each vertex i $\in \mathbb{NP}$ -HardObjective: $\min \sum_i x_i$ $\in \mathbb{P}$

 $0 \le x_i \le 1$, for each vertex *i*

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_i x_i$ $\sum_i x_i > 1$, for each edge e = (i, j) $\in \mathbb{NP}$ -HardSubject to: $x_i \in \{0, 1\}$, for each vertex i $\in \mathbb{NP}$ -HardObjective: $\min \sum_i x_i$ $\in \mathbb{P}$ Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j) $\in \mathbb{P}$ $0 \le x_i \le 1$, for each vertex i $\in \mathbb{P}$

LP Relaxation: Remove all integrality constraints to turn ILP into LP.

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_i x_i$ VertexSubject to: $x_i + x_j \ge 1$, for each edge e = (i, j)Vertex $0 \le x_i \le 1$, for each vertex iSelection

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective:
$$\min \sum_i x_i$$
VertexSubject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ Vertex $0 \le x_i \le 1$, for each vertex i Selection

If $x_i = 1$, what should we do with vertex *i*?

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective:
$$\min \sum_i x_i$$
VertexSubject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ Vertex $0 \le x_i \le 1$, for each vertex i Selection

If $x_i = 1$, what should we do with vertex *i*? Add to subset **V** If $x_i = 0$, what should we do with vertex *i*?

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective:
$$\min \sum_i x_i$$
VertexSubject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ Vertex $0 \le x_i \le 1$, for each vertex i Selection

If $x_i = 1$, what should we do with vertex *i*? Add to subset *S* If $x_i = 0$, what should we do with vertex *i*? Don't add to subset *S*

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective:
$$\min \sum_i x_i$$
VertexSubject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ Vertex $0 \le x_i \le 1$, for each vertex i Selection

If
$$x_i = 1$$
, what should we do with vertex *i*? Add to subset *S*
If $x_i = 0$, what should we do with vertex *i*? Don't add to subset *S*
If $x_i = \frac{126}{337}$, what should we do with vertex *i*?

Objective: $\min \sum_{i} x_{i}$ Subject to: $x_{i} + x_{j} \ge 1$, for each edge e = (i, j) $0 \le x_{i} \le 1$, for each vertex ii $f x_{i} \ge \frac{1}{2}$, add vertex ito our subset S.

Is *S* a vertex cover?

Is *S* a vertex cover?

Yes. For every edge, $x_i + x_j \ge 1$. Thus, at least one of x_i or $x_j \ge \frac{1}{2}$.

Is S a vertex cover?

Yes. For every edge, $x_i + x_j \ge 1$. Thus, at least one of x_i or $x_j \ge \frac{1}{2}$. So for every edge, at least one of its vertices will be in S.

Objective: $\min \sum_{i} x_{i}$ Subject to: $x_{i} + x_{j} \ge 1$, for each edge e = (i, j) $0 \le x_{i} \le 1$, for each vertex i $f = x_{i} \ge \frac{1}{2}$, add vertex ito our subset S.

What is the relationship between ALG = |S| and OPT?

Objective: $\min \sum_i x_i$ Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j) $0 \le x_i \le 1$, for each vertex i

Can we bound OPT from below?

Objective: $\min \sum_i x_i$ Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j) $0 \le x_i \le 1$, for each vertex i

Can we bound OPT from below?

Let x_{ILP} and x_{LP} be the set of x values found by the ILP and LP

Objective: $\min \sum_i x_i$ Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j) $0 \le x_i \le 1$, for each vertex i

Can we bound OPT from below?

Let x_{ILP} and x_{LP} be the set of x values found by the ILP and LP Claim: $\sum x_{LP} \le OPT$.

Objective:
$$\min \sum_i x_i$$
Subject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ $0 \le x_i \le 1$, for each vertex i

Can we bound OPT from below?

Let x_{ILP} and x_{LP} be the set of x values found by the ILP and LP Claim: $\sum x_{LP} \le OPT$.

Proof: OPT = ?

Objective:
$$\min \sum_i x_i$$
Subject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ $0 \le x_i \le 1$, for each vertex i

Can we bound OPT from below?

Let x_{ILP} and x_{LP} be the set of x values found by the ILP and LP Claim: $\sum x_{LP} \leq OPT$. Proof: OPT = $\sum x_{ILP}$, where $x_i \in \{0,1\}$...? $\sum \chi_{LP} \leq \sum \chi_{ILP}$

Objective:
$$\min \sum_i x_i$$
Subject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ $0 \le x_i \le 1$, for each vertex i

Can we bound OPT from below?

Let x_{ILP} and x_{LP} be the set of x values found by the ILP and LP

Claim: $\sum x_{LP} \leq OPT$.

Proof: OPT = $\sum x_{ILP}$, where $x_i \in \{0,1\}$. When x_i is relaxed so that $0 \le x_i \le 1$, this gives more possibilities to further decrease $\sum_i x_i$. Thus, $\sum x_{LP} \le OPT$.

Can we bound OPT from below?

Let x _{ILF}	Law of LP Relaxations:	J LP
Claim:	$OPT_{IP} \leq OPT_{IIP}$	
Proof:		d so
that 0	(minimization problem)	
decrea	Ise $\sum_i x_i$. Thus, $\sum x_{LP} \leq OPT$.	

Objective:
$$\min \sum_i x_i$$
Subject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ $0 \le x_i \le 1$, for each vertex i

$$\sum \underline{\mathbf{x}_{\mathsf{LP}}} = \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}} x_i \ge \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \ge \frac{1}{2}} x_i, \text{ because...?}$$

Objective:
$$\min \sum_i x_i$$
Subject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ $0 \le x_i \le 1$, for each vertex i

How does
$$\sum x_{LP}$$
 relate to ALG?
 $\sum x_{LP} = \sum_{x_i \in X_{LP}} x_i \ge \sum_{x_i \in X_{LP}: x_i \ge \frac{1}{2}} x_i$, because it's a subset of x_{LP}

Objective:
$$\min \sum_i x_i$$
Subject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ If $x_i \ge \frac{1}{2}$, add vertex i $0 \le x_i \le 1$, for each vertex i to our subset S .

How does
$$\sum x_{LP}$$
 relate to ALG?

$$\sum x_{LP} = \sum_{x_i \in X_{LP}} x_i \ge \sum_{x_i \in X_{LP}: x_i \ge \frac{1}{2}} x_i$$
, because it's a subset of x_{LP}

$$\ge \sum_{x_i \in X_{LP}: x_i \ge \frac{1}{2}} \frac{1}{2}$$
, because...?

Objective:
$$\min \sum_i x_i$$
If $x_i \ge \frac{1}{2}$, add vertex i Subject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ If $x_i \ge \frac{1}{2}$, add vertex i $0 \le x_i \le 1$, for each vertex i to our subset S .

$$\sum \mathbf{x}_{\mathsf{LP}} = \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}} x_i \ge \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \ge \frac{1}{2}} x_i, \text{ because it's a subset of } \mathbf{x}_{\mathsf{LP}} \\ \ge \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \ge \frac{1}{2}} \frac{1}{2}, \text{ because each } x_i \text{ is at least } \frac{1}{2}$$

Objective:
$$\min \sum_i x_i$$
Subject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ $0 \le x_i \le 1$, for each vertex i

$$\sum \mathbf{x}_{\mathsf{LP}} = \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}} x_i \ge \sum_{\substack{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \ge \frac{1}{2} \\ x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \in \mathbb{Z}_{\mathsf{LP}}: x_i \ge \frac{1}{2} \\ x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \in \mathbb{Z}_{\mathsf{LP}}: x_i \in \mathbb{Z$$

Objective:
$$\min \sum_i x_i$$
Subject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ $0 \le x_i \le 1$, for each vertex i

$$\begin{split} \sum \mathbf{x}_{\mathsf{LP}} &= \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}} x_i \geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} x_i, \text{ because it's a subset of } \mathbf{x}_{\mathsf{LP}} \\ &\geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} \frac{1}{2}, \text{ because each } x_i \text{ is at least } \frac{1}{2} \\ &= \frac{1}{2} \left| \left\{ x_i \in \mathsf{x}_{\mathsf{LP}}: x_i \geq \frac{1}{2} \right\} \right| = ? \end{split}$$

Objective:
$$\min \sum_i x_i$$
Subject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ $0 \le x_i \le 1$, for each vertex i

$$\begin{split} \sum \mathbf{x}_{\mathsf{LP}} &= \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}} x_i \geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} x_i, \text{ because it's a subset of } \mathbf{x}_{\mathsf{LP}} \\ &\geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} \frac{1}{2}, \text{ because each } x_i \text{ is at least } \frac{1}{2} \\ &= \frac{1}{2} \left| \left\{ x_i \in \mathsf{x}_{\mathsf{LP}}: x_i \geq \frac{1}{2} \right\} \right| = \underbrace{1}_2 \mathsf{ALG} \end{split}$$

Objective: $\min \sum_i x_i$ Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j) $0 \le x_i \le 1$, for each vertex i

What is the relationship between ALG and OPT?

Objective: $\min \sum_i x_i$ Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j) $0 \le x_i \le 1$, for each vertex i

What is the relationship between ALG and OPT?

$$\sum x_{LP} \ge \frac{1}{2}$$
 ALG and $\sum x_{LP} \le OPT$

Objective:
$$\min \sum_i x_i$$
Subject to: $x_i + x_j \ge 1$, for each edge $e = (i, j)$ $0 \le x_i \le 1$, for each vertex i

What is the relationship between ALG and OPT?

$$\sum x_{LP} \ge \frac{1}{2}$$
 ALG and $\sum x_{LP} \le OPT$

 $ALG \leq 2 \text{ OPT}$

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

$$U = \{1, 4, 7, 8, 10\}$$
$$S = \left\{ \begin{cases} \{1, 7, 8\}, \{1, 4, 7\}, \\ \{7, 8\}, \{4, 8, 10\} \end{cases} \right\}$$

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

$$U = \{1, 4, 7, 8, 10\}$$
$$S = \begin{cases} \{1, 7, 8\}, \{1, 4, 7\}, \\ \{7, 8\}, \{4, 8, 10\} \end{cases}$$

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

 $\begin{array}{lll} \text{Objective:} & \min \sum_s x_s \\ \text{Subject to:} & \sum_{s: \ u \in s} x_s \geq 1 \text{, for each } u \in U \\ & x_s \in \{0,1\} \text{, for each set } s \end{array}$

$$U = \{1, 4, 7, 8, 10\}$$
$$S = \left\{ \begin{cases} \{1, 7, 8\}, \{1, 4, 7\}, \\ \{7, 8\}, \{4, 8, 10\} \end{cases} \right\}$$

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

$\begin{array}{llllllllllllllllllllllllllllllllllll$		
<u>Example:</u>	$ \begin{array}{ c c c } \text{Objective: } \min x_1 + x_2 + x_3 + x_4 \\ \text{Subject to: } x_1 + x_2 \geq 1 \\ & x_2 + x_4 \geq 1 \\ & x_1 + x_2 + x_3 \geq 1 \\ & x_1 + x_3 + x_4 \geq 1 \\ & x_4 \geq 1 \\ & x_1, x_2, x_3, x_4 \in \{0, 1\} \end{array} $	$U = \{1, 4, 7, 8, 10\}$ $S = \begin{cases} \{1, 7, 8\}, \{1, 4, 7\}, \\ \{7, 8\}, \{4, 8, 10\} \end{cases}$

Objective:
$$\min \sum_{s} x_s$$
If $x_s \ge \frac{1}{2}$, add set s Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$ If $x_s \ge \frac{1}{2}$, add set s $0 \le x_s \le 1$, for each set s to our subset S_{ALG} .

Objective:
$$\min \sum_{s} x_s$$
If $x_s \ge \frac{1}{2}$, add set s Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$ If $x_s \ge \frac{1}{2}$, add set s $0 \le x_s \le 1$, for each set s to our subset S_{ALG} .

Could this lead to an invalid solution?

Objective:
$$\min \sum_{s} x_s$$
If $x_s \ge \frac{1}{2}$, add set s Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$ If $x_s \ge \frac{1}{2}$, add set s $0 \le x_s \le 1$, for each set s to our subset S_{ALG} .

Could this lead to an invalid solution?

Objective:
$$\min x_1 + x_2 + x_3 + x_4$$

Subject to: $x_1 + x_2 + x_3 \ge 1$
 $x_1 + x_2 + x_4 \ge 1$
 $x_1 + x_3 + x_4 \ge 1$
 $x_2 + x_3 + x_4 \ge 1$
 $x_1, x_2, x_3, x_4 \in [0,1]$

$$U = \{1, 2, 3, 4\}$$
$$S = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$$

Objective:
$$\min \sum_{s} x_s$$
If $x_s \ge \frac{1}{2}$, add set s Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$ If $x_s \ge \frac{1}{2}$, add set s $0 \le x_s \le 1$, for each set s to our subset S_{ALG} .

Could this lead to an invalid solution?

Objective:
$$\min x_1 + x_2 + x_3 + x_4$$

Subject to: $x_1 + x_2 + x_3 \ge 1$
 $x_1 + x_2 + x_4 \ge 1$
 $x_1 + x_3 + x_4 \ge 1$
 $x_2 + x_3 + x_4 \ge 1$
 $x_1, x_2, x_3, x_4 \in [0,1]$

$$U = \{1, 2, 3, 4\}$$
$$S = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$$

Yes, in this case $x_s = \frac{1}{3}$, $\forall s \Rightarrow$ No sets are selected (invalid solution).

Objective:
$$\min \sum_{s} x_s$$
Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$ \blacksquare $0 \le x_s \le 1$, for each set s

Objective: $\min \sum_{s} x_s$ Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$ $0 \le x_s \le 1$, for each set s

 $\quad \textbf{Add set } s \text{ to our subset} \\ S_{ALG} \text{ with probability of } x_s.$