Solving Linear Programs $\quad x \in \mathbb{R}^{d}$
output: x^{*} feasible

$$
\begin{array}{ll}
\max & c^{\top} x \\
\text { st. } & A x \leq
\end{array}
$$

$$
x \geqslant 0
$$

$$
\begin{aligned}
\rightarrow n & =\# \text { Constraintst } \\
& \text { \# dims } \\
& =2 \cdot \text { sometning }
\end{aligned}
$$

best know
today:

Vertex Cover Linear Program

Input
Graph $G=(V, E)$
Where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
and $\mathrm{E}=\left\{\left\{v_{i}, v_{j}\right\}\right.$ where $\left.v_{i}, v_{j} \in V\right\}$

Output
$V^{\prime} \subseteq V$
so that all edges are covered
for all $\left\{v_{i}, v_{j}\right\} \in E, V_{i} \in V^{\prime}$ or $V_{j} \in V^{\prime}$ V^{\prime} as small as possible

Linear Program
Variables: x_{i} for each v_{i}

$$
\begin{array}{lll}
x_{i}=1 & v_{i} \in V^{\prime} \\
x_{i}=0 & V_{i} \notin V^{\prime} &
\end{array}
$$

objective: $\min \sum x_{i}$
for each edge $\left\{v_{i}, v_{j}\right\}$:

$$
x_{i}+x_{j} \geqslant 1
$$

Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$
Subject to: $x_{i}+x_{j} \geq 1$, for each edge $\left\{v_{i}, v_{j}\right\}$
$x_{i} \in\{0,1\}$, for each vertex i
Example:

Objective: $\min x_{1}+x_{2}+x_{3}+x_{4}$
Subject to: $x_{1}+x_{2} \geq 1$
$x_{2}+x_{3} \geqslant 1$
$x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}$

Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$
Subject to: $x_{i}+x_{j} \geq 1$, for each edge $\left\{v_{i}, v_{j}\right\}$
$x_{i} \in\{0,1\}$, for each vertex i
Example:

Objective: $\min x_{1}+x_{2}+x_{3}+x_{4}$
Subject to:
$x_{1}+x_{2} \geq 1$
$x_{2}+x_{3} \geq 1$
$x_{2}+x_{4} \geq 1$
$x_{3}+x_{4} \geq 1$
$x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}$

Set Cover ILP

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.
vars: $x_{i}=1$ if we select s_{i}
$x_{i}=0$ if not
$\min \sum x_{i}$
Vertex Cover example

$$
x_{1}+x_{2} \geq 1
$$

Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $\left\{v_{i}, v_{j}\right\}$
$x_{i} \in\{0,1\}$, for each vertex i
Example:
Objective: $\min x_{1}+x_{2}+x_{3}+x_{4}$
Subject to: $x_{1}+x_{2} \geq 1$
$x_{2}+x_{3} \geq 1$
$x_{2}+x_{4} \geq 1$
(1)

$$
\begin{aligned}
& U=\{1,4,7,8,10\} \\
& S=\left\{\begin{array}{c}
\left.s_{1}, 7,8\right\},\{1,4,7\}, \\
\{7,8\}, \frac{(4,8,10\}}{s_{4}} \\
s_{3}
\end{array}\right\}
\end{aligned}
$$

Set Cover ILP

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_{s} x_{s}$
Subject to: $\sum_{s: u \in s} x_{s} \geq 1$, for each $u \in U$ $x_{s} \in\{0,1\}$, for each set s

$$
\begin{aligned}
& U=\{1,4,7,8,10\} \\
& S=\left\{\begin{array}{l}
\{1,7,8\},\{1,4,7\}, \\
\{7,8\},\{4,8,10\}
\end{array}\right\}
\end{aligned}
$$

Set Cover ILP

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_{s} x_{s}$
Subject to: $\sum_{s: u \in s} x_{s} \geq 1$, for each $u \in U$ $x_{s} \in\{0,1\}$, for each set s

Example:

Objective: $\min x_{1}+x_{2}+x_{3}+x_{4}$
Subject to: $\begin{array}{r}x_{1}+x_{2} \geq 1 \\ x_{2}+x_{4} \geq 1\end{array}$
$x_{1}+x_{2}+x_{3} \geq 1$
$x_{1}+x_{3}+x_{4} \geq 1$
$x_{4} \geq 1$
$x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}$

$$
\begin{aligned}
& U=\{1,4,7,8,10\} \\
& S=\left\{\begin{array}{c}
\{1,7,8\},\{1,4,7\}, \\
\{7,8\},\{4,8,10\}
\end{array}\right\}
\end{aligned}
$$

ENP-Hard

We now have a reduction from Vertex Cover to

We now have a reduction from Vertex Cover to Solving ILP

We now have a reduction from Vertex Cover to Solving ILP

So Solving ILP is NP-hard
$x_{1}, x_{2} \in \mathbb{R}$
Objective:
$\max 5 x_{1}+8 x_{2}$
Subject to:
$x_{1}+x_{2} \leq 6$ $5 x_{1}+9 x_{2} \leq 45$
$x_{1}, x_{2} \geq 0$

$x_{1}, x_{2} \in \mathbb{R}$
Objective: $\quad \max 5 x_{1}+8 x_{2}$
Subject to: $\quad x_{1}+x_{2} \leq 6$
$5 x_{1}+9 x_{2} \leq 45$
$x_{1}, x_{2} \geq 0$

$x_{1}, x_{2} \in \mathbb{R}$
Objective: $\quad \max 5 x_{1}+8 x_{2}$
Subject to: $\quad x_{1}+x_{2} \leq 6$
$5 x_{1}+9 x_{2} \leq 45$
$x_{1}, x_{2} \geq 0$

$$
\begin{array}{ll}
\hline x_{1}, x_{2} \in \mathbb{N} \rightarrow \begin{array}{l}
\text { natural } \\
\text { ints } \geqslant 0
\end{array} \\
\text { Objective: } & \max 5 x_{1}+8 x_{2} \\
\text { Subject to: } & x_{1}+x_{2} \leq 6 \\
& 5 x_{1}+9 x_{2} \leq 45 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

$x_{1}, x_{2} \in \mathbb{N}$
Objective: $\quad \max 5 x_{1}+8 x_{2}$
Subject to: $\quad x_{1}+x_{2} \leq 6$
$5 x_{1}+9 x_{2} \leq 45$
$x_{1}, x_{2} \geq 0$

Optimal continuous solution \rightarrow optimal integer solution?

- Closest integer solution?
- Closest feasible integer solution?
- Closest feasible integer solution on feasible region boundary?

Optimal continuous solution \rightarrow optimal integer solution?

- Closest integer solution? - Not feasible
- Closest feasible integer solution?
- Closest feasible integer solution on feasible region boundary?

Optimal continuous solution \rightarrow optimal integer solution?

- Closest integer solution? - Not feasible
- Closest feasible integer solution? - Obj = 34
- Closest feasible integer solution on feasible region boundary?

Optimal continuous solution \rightarrow optimal integer solution?

- Closest integer solution? - Not feasible
- Closest feasible integer solution? - Obj = 34
- Closest feasible integer solution on feasible region boundary? - Obj = 39

Optimal continuous solution \rightarrow optimal integer solution?

- Closest integer solution? - Not feasible
- Closest feasible integer solution? - Obj = 34
- Closest feasible integer solution on feasible region boundary? - Obj = 39
- Actual optimal - Obj $=40$

$x_{2} \quad$	$x_{1}, x_{2} \in \mathbb{N}$	
Objective:	$\max 5 x_{1}+8 x_{2}$	
Subject to:	$x_{1}+x_{2} \leq 6$	
	$5 x_{1}+9 x_{2} \leq 45$	
	$x_{1}, x_{2} \geq 0$	

$x_{2} \quad$| $x_{1}, x_{2} \in \mathbb{N}$
 Objective: | max $5 x_{1}+8 x_{2}$
 Subject to:
 $x_{1}+x_{2} \leq 6$

 $x_{1}+9 x_{2} \leq 45$
 $x_{1}, x_{2} \geq 0$ |
| :--- | :--- |

$x_{1}, x_{2} \in \mathbb{N}$	
Objective:	$\max 5 x_{1}+8 x_{2}$
Subject to:	$x_{1}+x_{2} \leq 6$
	$5 x_{1}+9 x_{2} \leq 45$
	$x_{1}, x_{2} \geq 0$

x_{2}	$x_{1}, x_{2} \in \mathbb{N}$ Objective: max $5 x_{1}+8 x_{2}$ Subject to: $x_{1}+x_{2} \leq 6$ $5 x_{1}+9 x_{2} \leq 45$ $x_{1}, x_{2} \geq 0$

Integer feasible region:

$x_{1}, x_{2} \in \mathbb{N}$	
Objective:	$\max 5 x_{1}+8 x_{2}$
Subject to:	$x_{1}+x_{2} \leq 6$
	$5 x_{1}+9 x_{2} \leq 45$
	$x_{1}, x_{2} \geq 0$

Integer feasible region:

- Not convex.

$x_{1}, x_{2} \in \mathbb{N}$	
Objective:	$\max 5 x_{1}+8 x_{2}$
Subject to:	$x_{1}+x_{2} \leq 6$
	$5 x_{1}+9 x_{2} \leq 45$
	$x_{1}, x_{2} \geq 0$

Integer feasible region:

- Not convex.

$x_{1}, x_{2} \in \mathbb{N}$	
Objective:	$\max 5 x_{1}+8 x_{2}$
Subject to:	$x_{1}+x_{2} \leq 6$
	$5 x_{1}+9 x_{2} \leq 45$
	$x_{1}, x_{2} \geq 0$

Integer feasible region:

- Not convex.
- local optimum \neq global optimum.

Vertex Cover ILP - approximation
ALG $\leq \alpha$ OPT Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$
Subject to: $x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$ $x_{i} \in\{0,1\}$, for each vertex i

Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$
Subject to: $x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
\in NP-Hard $x_{i} \in\{0,1\}$, for each vertex i

Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$
Subject to: $x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
\in NP-Hard
$x_{i} \in\{0,1\}$, for each vertex i
Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
$\in P$
$0 \leq x_{i} \leq 1$, for each vertex i

Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
\in NP-Hard
$x_{i} \in\{0,1\}$, for each vertex i
Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
$\in P$
$0 \leq x_{i} \leq 1$, for each vertex i
LP Relaxation: Remove all integrality constraints to turn ILP into LP.

Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$
Subject to: $x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
$0 \leq x_{i} \leq 1$, for each vertex i

Vertex
Selection

Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$ $0 \leq x_{i} \leq 1$, for each vertex i

Vertex
Selection

If $x_{i}=1$, what should we do with vertex i ?

Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$ $0 \leq x_{i} \leq 1$, for each vertex i

Vertex
Selection

If $x_{i}=1$, what should we do with vertex i ? Add to subset $\$$
If $x_{i}=0$, what should we do with vertex i ?

Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$ $0 \leq x_{i} \leq 1$, for each vertex i

Vertex
Selection

If $x_{i}=1$, what should we do with vertex i ? Add to subset S
If $x_{i}=0$, what should we do with vertex i ? Don't add to subset S

Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$ $0 \leq x_{i} \leq 1$, for each vertex i

Vertex
Selection

If $x_{i}=1$, what should we do with vertex i ? Add to subset S
If $x_{i}=0$, what should we do with vertex i ? Don't add to subset S
If $x_{i}=\frac{126}{337}$, what should we do with vertex i ?

Vertex Cover ILP

$$
\begin{array}{ll}
\text { Objective: } & \min \sum_{i} x_{i} \\
\text { Subject to: } & x_{i}+x_{j} \geq 1 \text {, for each edge } e=(i, j) \not \subset \begin{array}{c}
\text { If } x_{i} \geq \frac{1}{2}, \text { add vertex } i \\
\\
\\
\\
0 \leq x_{i} \leq 1, \text { for each vertex } i
\end{array} \quad \text { to our subset } S .
\end{array}
$$

Vertex Cover ILP

$$
\begin{array}{|ll}
\text { Objective: } & \min \sum_{i} x_{i} \\
\text { Subject to: } & x_{i}+x_{j} \geq 1 \text {, for each edge } e=(i, j) \quad+\begin{array}{c}
\text { If } x_{i} \geq \frac{1}{2} \text {, add vertex } i \\
\\
\\
\\
\text { to our subset } S .
\end{array}
\end{array}
$$

Is S a vertex cover?

Vertex Cover ILP

$$
\begin{array}{ll}
\text { Objective: } & \min \sum_{i} x_{i} \\
\text { Subject to: } & x_{i}+x_{j} \geq 1, \text { for each edge } e=(i, j) \\
& 0 \leq x_{i} \leq 1, \text { for each vertex } i
\end{array}
$$

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

Is S a vertex cover?

Yes. For every edge, $x_{i}+x_{j} \geq 1$.

$$
\begin{aligned}
& x_{i}=0 \\
& x_{j}=0
\end{aligned}
$$

Vertex Cover ILP

```
Objective: \(\min \sum_{i} x_{i}\)
Subject to: \(\quad x_{i}+x_{j} \geq 1\), for each edge \(e=(i, j)\)
    \(0 \leq x_{i} \leq 1\), for each vertex \(i\)
```

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

Is S a vertex cover?
Yes. For every edge, $x_{i}+x_{j} \geq 1$. Thus, at least one of x_{i} or $x_{j} \geq \frac{1}{2}$.

Vertex Cover ILP

$$
\begin{array}{ll}
\text { Objective: } & \min \sum_{i} x_{i} \\
\text { Subject to: } & x_{i}+x_{j} \geq 1, \text { for each edge } e=(i, j) \\
& 0 \leq x_{i} \leq 1, \text { for each vertex } i
\end{array}
$$

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

Is S a vertex cover?
Yes. For every edge, $x_{i}+x_{j} \geq 1$. Thus, at least one of x_{i} or $x_{j} \geq \frac{1}{2}$. So for every edge, at least one of its vertices will be in S.

Vertex Cover ILP

$$
\begin{array}{|ll}
\text { Objective: } & \min \sum_{i} x_{i} \\
\text { Subject to: } & x_{i}+x_{j} \geq 1 \text {, for each edge } e=(i, j) \quad+\begin{array}{c}
\text { If } x_{i} \geq \frac{1}{2} \text {, add vertex } i \\
\\
\\
\\
\text { to our subset } S .
\end{array}
\end{array}
$$

What is the relationship between ALG $=|S|$ and OPT?

Vertex Cover ILP

$$
\begin{array}{|ll}
\text { Objective: } & \min \sum_{i} x_{i} \\
\text { Subject to: } & x_{i}+x_{j} \geq 1 \text {, for each edge } e=(i, j) \quad+\begin{array}{c}
\text { If } x_{i} \geq \frac{1}{2} \text {, add vertex } i \\
\\
\\
\\
\text { to our subset } S .
\end{array}
\end{array}
$$

Can we bound OPT from below?

Vertex Cover ILP

$$
\begin{array}{|ll}
\text { Objective: } & \min \sum_{i} x_{i} \\
\text { Subject to: } & x_{i}+x_{j} \geq 1 \text {, for each edge } e=(i, j) \quad+\begin{array}{c}
\text { If } x_{i} \geq \frac{1}{2} \text {, add vertex } i \\
\\
\\
\\
\text { to our subset } S .
\end{array}
\end{array}
$$

Can we bound OPT from below?
Let $x_{\text {ILP }}$ and $x_{\text {LP }}$ be the set of x values found by the ILP and LP

Vertex Cover ILP

$$
\begin{array}{|ll}
\text { Objective: } & \min \sum_{i} x_{i} \\
\text { Subject to: } & x_{i}+x_{j} \geq 1 \text {, for each edge } e=(i, j) \quad+\begin{array}{c}
\text { If } x_{i} \geq \frac{1}{2} \text {, add vertex } i \\
\\
\\
\\
\text { to our subset } S .
\end{array}
\end{array}
$$

Can we bound OPT from below?
Let $x_{\text {ILP }}$ and $x_{\text {LP }}$ be the set of x values found by the ILP and LP
Claim: $\sum \mathrm{x}_{\mathrm{LP}} \leq$ OPT.

Vertex Cover ILP

$$
\begin{array}{|ll}
\text { Objective: } & \min \sum_{i} x_{i} \\
\text { Subject to: } & x_{i}+x_{j} \geq 1 \text {, for each edge } e=(i, j) \neq \begin{array}{c}
\text { If } x_{i} \geq \frac{1}{2} \text {, add vertex } i \\
\\
\\
\\
\text { to our subset } S .
\end{array}
\end{array}
$$

Can we bound OPT from below?
Let $x_{1 L P}$ and $x_{L P}$ be the set of x values found by the ILP and LP
Claim: $\sum \mathrm{x}_{\mathrm{LP}} \leq \mathrm{OPT}$.
Proof: OPT $=$?

Vertex Cover ILP

Objective: $\min \sum_{i} x_{i}$

Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
$0 \leq x_{i} \leq 1$, for each vertex i

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

Can we bound OPT from below?
Let $x_{\text {LP }}$ and $x_{\text {LP }}$ be the set of x values found by the ILP and LP Claim: $\sum \mathrm{x}_{\mathrm{LP}}^{K} \leq$ OPT.

$$
\text { Proof: } \mathrm{OPT}=\sum \mathrm{x}_{\text {LP }} \text {, where } x_{i} \in\{0,1\} \ldots \text { ? }
$$

$$
\sum x_{L P} \leqslant \sum x_{1 L P}
$$

Vertex Cover ILP

> | Objective: | $\min \sum_{i} x_{i}$ |
| :--- | :--- |
| Subject to: | $x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$ |
| | $0 \leq x_{i} \leq 1$, for each vertex i |

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

Can we bound OPT from below?
Let $x_{\text {ILP }}$ and $x_{L P}$ be the set of x values found by the ILP and LP Claim: $\sum \mathrm{x}_{\mathrm{LP}} \leq$ OPT.

Proof: OPT $=\sum \mathrm{x}_{\text {LLP }}$, where $x_{i} \in\{0,1\}$. When x_{i} is relaxed so that $0 \leq x_{i} \leq 1$, this gives more possibilities to further decrease $\sum_{i} x_{i}$. Thus, $\sum \mathrm{x}_{\mathrm{LP}} \leq \mathrm{OPT}$.

Vertex Cover ILP

$$
\begin{array}{|ll}
\hline \text { Objective: } & \min \sum_{i} x_{i} \\
\text { Subject to: } & x_{i}+x_{j} \geq 1 \text {, for each edge } e=(i, j) \quad+\begin{array}{c}
\text { If } x_{i} \geq \frac{1}{2} \text {, add vertex } i \\
\\
\\
\\
\text { to our subset } S .
\end{array}
\end{array}
$$

Can we bound OPT from below?

decrease $L_{i} \chi_{i \cdot}$ Inus, $\sum X_{\mathrm{LP}} \pm$ UPI.

Vertex Cover ILP

Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
$0 \leq x_{i} \leq 1$, for each vertex i

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

How does $\sum \mathrm{x}_{\mathrm{LP}}$ relate to ALG?

Vertex Cover ILP

Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
$0 \leq x_{i} \leq 1$, for each vertex i

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

How does $\sum \mathrm{x}_{\text {LP }}$ relate to ALG?

$$
\sum \mathrm{x}_{\mathrm{LP}}=\sum_{x_{i} \in \mathrm{X}_{\mathrm{LP}}} x_{i} \geq \sum_{x_{i} \in \mathrm{x}_{\mathrm{LP}}: x_{i} \geq \frac{1}{2}} x_{i} \text {, because it's a subset of } \mathrm{x}_{\mathrm{LP}}
$$

Vertex Cover ILP

Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
$0 \leq x_{i} \leq 1$, for each vertex i

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

How does $\sum \mathrm{x}_{\mathrm{LP}}$ relate to ALG?

$$
0.6+0.9
$$

$$
\sum \mathrm{x}_{\mathrm{LP}}=\sum_{x_{i} \in \mathrm{X}_{\mathrm{LP}}} x_{i} \geq \sum_{x_{i} \in \mathrm{X}_{\mathrm{LP}}: x_{i} \geq \frac{1}{2}} x_{i}, \text { because it's a subset of } \mathrm{x}_{\mathrm{LP}}
$$

$$
\geq \sum_{x_{i} \in \mathrm{X}_{\mathrm{LP}: x_{i} \geq \frac{1}{2}} \frac{1}{2}, \text { because } \ldots ? ~}^{\text {? }}
$$

Vertex Cover ILP

Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
$0 \leq x_{i} \leq 1$, for each vertex i

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

How does $\sum \mathrm{x}_{\mathrm{LP}}$ relate to ALG?

$$
\begin{aligned}
\sum \mathrm{x}_{\mathrm{LP}}=\sum_{x_{i} \in \mathrm{X}_{\mathrm{LP}}} x_{i} & \geq \sum_{x_{i} \in \mathrm{X}_{\mathrm{LP}:}: x_{i} \geq \frac{1}{2}} x_{i}, \text { because it's a subset of } \mathrm{x}_{\mathrm{LP}} \\
& \geq \sum_{x_{i} \in \mathrm{X}_{\mathrm{LP}:}: x_{i} \geq \frac{1}{2}} \frac{1}{2}, \text { because each } x_{i} \text { is at least } \frac{1}{2}
\end{aligned}
$$

Vertex Cover ILP

Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
$0 \leq x_{i} \leq 1$, for each vertex i

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

How does $\sum \mathrm{x}_{\mathrm{LP}}$ relate to ALG?

$$
\begin{aligned}
\sum \mathrm{x}_{\mathrm{LP}}=\sum_{x_{i} \in \mathrm{X} \mathrm{LP}} x_{i} & \geq \sum_{x_{i} \in \mathrm{x}_{\mathrm{L} P: x_{i} \geq \frac{1}{2}}} x_{i}, \text { because it's a subset of } \mathrm{x}_{\mathrm{LP}} \\
& \left.\geq \sum_{x_{i} \in \mathrm{x}_{\mathrm{LP}}: \left.x_{i} \geq \frac{1}{2} \frac{1}{2} \right\rvert\,}^{2} \right\rvert\, \\
& =\frac{1}{2}\left|\left\{x_{i} \in \mathrm{x}_{\mathrm{LP}}: x_{i} \geq \frac{1}{2}\right\}\right|
\end{aligned}
$$

Vertex Cover ILP

Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
$0 \leq x_{i} \leq 1$, for each vertex i

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

How does $\sum \mathrm{x}_{\mathrm{LP}}$ relate to ALG?

$$
\begin{aligned}
\sum \mathrm{x}_{\mathrm{LP}}=\sum_{x_{i} \in \mathrm{X} \mathrm{LP}} x_{i} & \geq \sum_{x_{i} \in \mathrm{x}_{\mathrm{LP}:}: x_{i} \geq \frac{1}{2}} x_{i}, \text { because it's a subset of } \mathrm{x}_{\mathrm{LP}} \\
& \geq \sum_{x_{i} \in \mathrm{x}_{\mathrm{LP}:}: x_{i} \geq \frac{1}{2}} \frac{1}{2}, \text { because each } x_{i} \text { is at least } \frac{1}{2} \\
& =\frac{1}{2}\left|\left\{x_{i} \in \mathrm{x}_{\mathrm{LP}}: x_{i} \geq \frac{1}{2}\right\}\right|=?
\end{aligned}
$$

Vertex Cover ILP

Objective: $\min \sum_{i} x_{i}$
Subject to: $\quad x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
$0 \leq x_{i} \leq 1$, for each vertex i

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

How does $\sum \mathrm{x}_{\mathrm{LP}}$ relate to ALG?

$$
\begin{aligned}
\sum \mathrm{x}_{\mathrm{LP}}=\sum_{x_{i} \in \mathrm{X}_{\mathrm{LP}}} x_{i} & \geq \sum_{x_{i} \in \mathrm{x}_{\mathrm{LP}:}: x_{i} \geq \frac{1}{2}} x_{i}, \text { because it's a subset of } \mathrm{x}_{\mathrm{LP}} \\
& \geq \sum_{x_{i} \in \mathrm{x}_{\mathrm{LP}:}: x_{i} \geq \frac{1}{2}} \frac{1}{2}, \text { because each } x_{i} \text { is at least } \frac{1}{2} \\
& =\frac{1}{2}\left|\left\{x_{i} \in \mathrm{x}_{\mathrm{LP}:} x_{i} \geq \frac{1}{2}\right\}\right|=\frac{1}{2} \mathrm{ALG}
\end{aligned}
$$

Vertex Cover ILP

$$
\begin{array}{|ll}
\text { Objective: } & \min \sum_{i} x_{i} \\
\text { Subject to: } & x_{i}+x_{j} \geq 1 \text {, for each edge } e=(i, j) \quad+\begin{array}{c}
\text { If } x_{i} \geq \frac{1}{2} \text {, add vertex } i \\
\\
\\
\\
\text { to our subset } S .
\end{array}
\end{array}
$$

What is the relationship between ALG and OPT?

Vertex Cover ILP

$$
\begin{array}{ll}
\text { Objective: } & \min \sum_{i} x_{i} \\
\text { Subject to: } & x_{i}+x_{j} \geq 1, \text { for each edge } e=(i, j) \\
& 0 \leq x_{i} \leq 1, \text { for each vertex } i
\end{array}
$$

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

What is the relationship between ALG and OPT?

$$
\sum x_{\mathrm{LP}} \geq \frac{1}{2} \mathrm{ALG} \text { and } \sum \mathrm{x}_{\mathrm{LP}} \leq \mathrm{OPT}
$$

Vertex Cover ILP

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_{i}+x_{j} \geq 1$, for each edge $e=(i, j)$
$0 \leq x_{i} \leq 1$, for each vertex i

+ If $x_{i} \geq \frac{1}{2}$, add vertex i to our subset S.

What is the relationship between ALG and OPT?

$$
\sum \mathrm{x}_{\mathrm{LP}} \geq \frac{1}{2} \mathrm{ALG} \text { and } \sum \mathrm{x}_{\mathrm{LP}} \leq \mathrm{OPT}
$$

$$
\mathrm{ALG} \leq 2 \mathrm{OPT}
$$

Set Cover ILP

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

$$
\begin{aligned}
& U=\{1,4,7,8,10\} \\
& S=\left\{\begin{array}{l}
\{1,7,8\},\{1,4,7\}, \\
\{7,8\},\{4,8,10\}
\end{array}\right\}
\end{aligned}
$$

Set Cover ILP

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

ILP?

$$
\begin{aligned}
& U=\{1,4,7,8,10\} \\
& S=\left\{\begin{array}{l}
\{1,7,8\},\{1,4,7\}, \\
\{7,8\},\{4,8,10\}
\end{array}\right\}
\end{aligned}
$$

Set Cover ILP

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_{s} x_{s}$
Subject to: $\sum_{s: u \in s} x_{s} \geq 1$, for each $u \in U$ $x_{s} \in\{0,1\}$, for each set s

$$
\begin{aligned}
& U=\{1,4,7,8,10\} \\
& S=\left\{\begin{array}{l}
\{1,7,8\},\{1,4,7\}, \\
\{7,8\},\{4,8,10\}
\end{array}\right\}
\end{aligned}
$$

Set Cover ILP

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_{s} x_{s}$
Subject to: $\sum_{s: u \in s} x_{s} \geq 1$, for each $u \in U$ $x_{s} \in\{0,1\}$, for each set s
Example:

$$
\begin{aligned}
& \text { Objective: } \\
& \text { Subject to: } \\
& \text { sin } x_{1}+x_{2}+x_{3}+x_{4} \\
& \\
& x_{2}+x_{4} \geq 1 \\
& \\
& x_{1}+x_{2}+x_{3} \geq 1 \\
& \\
& x_{1}+x_{3}+x_{4} \geq 1 \\
& \\
& x_{4} \geq 1 \\
& \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{aligned}
$$

$$
\begin{aligned}
& U=\{1,4,7,8,10\} \\
& S=\left\{\begin{array}{c}
\{1,7,8\},\{1,4,7\}, \\
\{7,8\},\{4,8,10\}
\end{array}\right\}
\end{aligned}
$$

Set Cover ILP

Objective: $\min \sum_{s} x_{s}$
Subject to: $\sum_{s: u \in s} x_{s} \geq 1$, for each $u \in U$ $0 \leq x_{s} \leq 1$, for each set s

If $x_{s} \geq \frac{1}{2}$, add set s to our subset $S_{A L G}$.

Set Cover ILP

$\begin{array}{ll}\text { Objective: } & \min \sum_{s} x_{s} \\ \text { Subject to: } & \sum_{s: u \in s} x_{s} \geq 1 \text {, for each } u \in U \\ & 0 \leq x_{s} \leq 1, \text { for each set } s\end{array} \nmid \begin{aligned} & \text { If } x_{s} \geq \frac{1}{2} \text {, add set } s \\ & \text { to our subset } S_{A L G}\end{aligned}$

Could this lead to an invalid solution?

Set Cover ILP

Objective: $\min \sum_{s} x_{s}$
Subject to: $\sum_{s: u \in s} x_{s} \geq 1$, for each $u \in U$ $0 \leq x_{s} \leq 1$, for each set s

If $x_{s} \geq \frac{1}{2}$, add set s to our subset $S_{A L G}$.

Could this lead to an invalid solution?

$$
\begin{aligned}
& \text { Objective: } \min x_{1}+x_{2}+x_{3}+x_{4} \\
& \text { Subject to: } x_{1}+x_{2}+x_{3} \geq 1 \\
& \\
& x_{1}+x_{2}+x_{4} \geq 1 \\
& \\
& x_{1}+x_{3}+x_{4} \geq 1 \\
& \\
& x_{2}+x_{3}+x_{4} \geq 1 \\
& \\
& x_{1}, x_{2}, x_{3}, x_{4} \in[0,1]
\end{aligned}
$$

$$
\begin{aligned}
& U=\{1,2,3,4\} \\
& S=\left\{\begin{array}{l}
\{1,2,3\},\{1,2,4\}, \\
\{1,3,4\},\{2,3,4\}
\end{array}\right\}
\end{aligned}
$$

Set Cover ILP

Objective: $\min \sum_{s} x_{s}$
Subject to: $\sum_{s: u \in s} x_{s} \geq 1$, for each $u \in U$ If $x_{s} \geq \frac{1}{2}$, add set s to our subset $S_{A L G}$.

Could this lead to an invalid solution?

$$
\begin{aligned}
& \text { Objective: } \min x_{1}+x_{2}+x_{3}+x_{4} \\
& \text { Subject to: } \\
& x_{1}+x_{2}+x_{3} \geq 1 \\
& \\
& x_{1}+x_{2}+x_{4} \geq 1 \\
& \\
& x_{1}+x_{3}+x_{4} \geq 1 \\
& \\
& x_{2}+x_{3}+x_{4} \geq 1 \\
& \\
& x_{1}, x_{2}, x_{3}, x_{4} \in[0,1]
\end{aligned}
$$

$$
\begin{aligned}
& U=\{1,2,3,4\} \\
& S=\left\{\begin{array}{l}
\{1,2,3\},\{1,2,4\}, \\
\{1,3,4\},\{2,3,4\}
\end{array}\right\}
\end{aligned}
$$

Yes, in this case $x_{s}=\frac{1}{3}, \forall s \Rightarrow$ No sets are selected (invalid solution).

Set Cover ILP

Objective: $\min \sum_{s} x_{s}$
Subject to: $\sum_{s: u \in s} x_{s} \geq 1$, for each $u \in U$
+
? $0 \leq x_{s} \leq 1$, for each set s

Set Cover ILP

Objective: $\min \sum_{s} x_{s}$
Subject to: $\sum_{s: u \in s} x_{s} \geq 1$, for each $u \in U$ $0 \leq x_{s} \leq 1$, for each set s
$+$
Add set s to our subset $S_{A L G}$ with probability of x_{s}.

